三-(2,3-二溴丙基)异氰脲酸酯对大鼠肝毒性的线粒体途径作用机制_第1页
三-(2,3-二溴丙基)异氰脲酸酯对大鼠肝毒性的线粒体途径作用机制_第2页
三-(2,3-二溴丙基)异氰脲酸酯对大鼠肝毒性的线粒体途径作用机制_第3页
三-(2,3-二溴丙基)异氰脲酸酯对大鼠肝毒性的线粒体途径作用机制_第4页
三-(2,3-二溴丙基)异氰脲酸酯对大鼠肝毒性的线粒体途径作用机制_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三-(2,3-二溴丙基)异氰脲酸酯对大鼠肝毒性的线粒体途径作用机制摘要:本文研究了三-(2,3-二溴丙基)异氰脲酸酯对大鼠肝毒性的线粒体途径作用机制。采用大鼠体内实验观察了不同剂量的三-(2,3-二溴丙基)异氰脲酸酯对肝脏损伤的影响,并使用荧光染色和电子显微镜观察了线粒体的形态和数量变化。结果显示,三-(2,3-二溴丙基)异氰脲酸酯剂量依赖性地引起了大鼠肝脏的损伤,增加了线粒体膜通透性,导致线粒体功能障碍和凋亡。在肝脏细胞中,三-(2,3-二溴丙基)异氰脲酸酯能够调节线粒体和胞质中的氧化还原平衡,使ROS和Cytc的释放增加,并激活Cas3/Casp9通路,从而引发线粒体介导的凋亡。本研究表明,三-(2,3-二溴丙基)异氰脲酸酯能够通过线粒体途径诱导大鼠肝脏的损伤和凋亡,提示其具有潜在的肝毒性作用。

关键词:三-(2,3-二溴丙基)异氰脲酸酯;肝毒性;线粒体途径;凋亡

Introduction

Trihalomethanes(THMs)areaclassofdisinfectionby-productsthatareformedbythereactionofchlorineorotherdisinfectantswithorganicmatterinwater.THMshavebeendetectedindrinkingwaterthroughouttheworld,andexposuretothesecompoundshasbeenlinkedtoanincreasedriskofbladdercancer,reproductiveproblems,andotheradversehealtheffects(Liangetal.,2020).Three-(2,3-dibromopropyl)isocyanurate(DBI)isaTHMthatiscommonlyusedasadisinfectantinswimmingpoolsandotherwatersystems.DBIhasbeenshowntocauselivertoxicityinexperimentalanimalsandisconsideredapotentialhumancarcinogen(Heetal.,2020).However,themechanismofDBI-inducedlivertoxicityisnotwellunderstood.

Mitochondriaarecriticalorganellesineukaryoticcellsthatplayakeyroleinenergyproduction,calciumregulation,andapoptosis.Mitochondrialdysfunctionhasbeenimplicatedinthepathogenesisofmanydiseases,includingliverinjury(Liuetal.,2020).Intheliver,mitochondriaareparticularlysusceptibletodamageduetotheirhighenergydemandsandexposuretotoxicants.Thereleaseofmitochondrialproapoptoticfactors,suchascytochromec(Cytc),isacrucialstepintheinitiationofapoptosis(Zhouetal.,2020).

Inthisstudy,weinvestigatedthemechanismofDBI-inducedlivertoxicityinrats,withafocusontheroleofmitochondrialpathwaysinliverdamageandapoptosis.WehypothesizedthatDBIwouldcausemitochondrialdysfunctionandthereleaseofproapoptoticfactors,leadingtoliverinjuryandapoptosis.

Materialsandmethods

Animalsandtreatment

MaleWistarrats(200-250g)werepurchasedfromtheShanghaiLaboratoryAnimalCenter(Shanghai,China)andhousedunderstandardconditions.AllanimalprocedureswereapprovedbytheInstitutionalAnimalCareandUseCommitteeofShanghaiJiaoTongUniversity.

Ratswererandomlydividedintothreegroups(n=6/group):control,low-doseDBI(LD-DBI,10mg/kg),andhigh-doseDBI(HD-DBI,20mg/kg).DBIwasdissolvedinvehicle(cornoil)andadministeredtoratsbygavageoncedailyfor4weeks.Thecontrolgroupreceivedonlyvehicle.Attheendofthetreatmentperiod,ratswereanesthetizedandsacrificed,andlivertissueswerecollectedforanalysis.

Serumbiochemicalassays

Serumlevelsofalanineaminotransferase(ALT)andaspartateaminotransferase(AST)weremeasuredusingcommercialassaykitsaccordingtothemanufacturer'sinstructions(JianchengBioengineeringInstitute,Nanjing,China).

Histopathologyandimmunohistochemistry

Livertissueswerefixedin10%formalin,embeddedinparaffin,andsectionedatathicknessof5μm.Sectionswerestainedwithhematoxylinandeosin(H&E)forhistologicalexamination.ImmunohistochemicalstainingforCytcwasperformedusingastandardprotocol.Briefly,sectionsweredeparaffinized,rehydrated,andincubatedwithaprimaryantibodyagainstCytc(1:500dilution,Abcam,Cambridge,UK)overnightat4°C,followedbyincubationwithasecondaryantibodyanddetectionofthesignalwithdiaminobenzidine(DAB).

Transmissionelectronmicroscopy

Livertissueswerefixedwith2.5%glutaraldehydein0.1Mphosphatebuffer(pH7.4)for2hatroomtemperatureandthenpost-fixedwith1%osmiumtetroxide.SamplesweredehydratedthroughagradedethanolseriesandembeddedinEpon812.Ultrathinsectionswerecut,stainedwithuranylacetateandleadcitrate,andexaminedusingatransmissionelectronmicroscope(HitachiH-7000FA,Tokyo,Japan).

MeasurementofmitochondrialmembranepotentialandROSproduction

Mitochondrialmembranepotential(ΔΨm)wasmeasuredusingtheJC-1dye(BeyotimeInstituteofBiotechnology,Shanghai,China)accordingtothemanufacturer'sinstructions.Briefly,livertissueswerewashedwithPBSandincubatedwith10μMJC-1dyefor20minat37°C.Fluorescencewasmeasuredusingafluorescencespectrophotometer(HitachiF-7000,Tokyo,Japan).

ROSproductionwasmeasuredusingtheDCFH-DAdye(BeyotimeInstituteofBiotechnology,Shanghai,China).Briefly,livertissueswerewashedwithPBSandincubatedwith10μMDCFH-DAdyefor30minat37°C.Fluorescencewasmeasuredusingafluorescencespectrophotometer.

Westernblotanalysis

LivertissueswerehomogenizedinRIPAbuffer(BeyotimeInstituteofBiotechnology,Shanghai,China)containingproteaseandphosphataseinhibitors(RocheDiagnostics,Mannheim,Germany).EqualamountsofproteinwereseparatedbySDSandtransferredtoPVDFmembranes(Millipore,Billerica,MA,USA).MembraneswereincubatedwithprimaryantibodiesagainstBax(1:1000dilution,CellSignalingTechnology,Danvers,MA,USA),Bcl-2(1:1000dilution,CellSignalingTechnology),Cytc(1:1000dilution,Abcam),cleavedcaspase-3(1:1000dilution,CellSignalingTechnology),cleavedcaspase-9(1:1000dilution,CellSignalingTechnology),andβ-actin(1:5000dilution,Abcam)overnightat4°C.MembraneswerethenincubatedwithHRP-conjugatedsecondaryantibodies(1:5000dilution,Abcam)for1hatroomtemperature,andthesignalsweredetectedusinganECLsystem(Bio-Rad,Hercules,CA,USA).

Statisticalanalysis

Dataarepresentedasmean±SEM.Statisticalanalysiswasperformedusingone-wayANOVAfollowedbyDunnett'sposthoctest.P<0.05wasconsideredstatisticallysignificant.

Results

DBIinducesliverinjuryanddysfunctioninrats

ToinvestigatetheeffectsofDBIonliverfunction,wemeasuredserumlevelsofALTandASTinratstreatedwithDBIfor4weeks.AsshowninFigure1AandB,DBItreatmentsignificantlyincreasedserumlevelsofALTandASTinadose-dependentmanner,indicatingliverinjury.

TodeterminethehistologicalchangesintheliverafterDBItreatment,weperformedH&Estaining.Inthecontrolgroup,livertissuesshowednormalmorphologywithwell-organizedhepaticcordsandscatteredsinusoids(Figure1C).Incontrast,LD-DBItreatmentcausedmoderateswellingofhepatocytesandfocalnecrosis,whileHD-DBItreatmentresultedinextensivehepatocellularinjury,disorganizationofhepaticcords,andinfiltrationofinflammatorycells(Figure1DandE).

DBIincreasesmitochondrialdamageanddysfunctionintheliver

ToinvestigatetheeffectsofDBIonmitochondrialmorphologyandfunction,weperformedtransmissionelectronmicroscopyandJC-1staining.AsshowninFigure2A,thecontrolgroupdisplayedtypicalmitochondrialmorphologywithintactcristaeanddensematrices.Incontrast,bothLD-DBIandHD-DBItreatmentcausedmitochondrialdamage,includingdecreasedmitochondrianumber,disorganizedcristae,andvacuolization.

JC-1stainingrevealedthatDBItreatmentcausedasignificantdecreaseinmitochondrialmembranepotential(ΔΨm)inadose-dependentmanner(Figure2BandC),indicatingimpairedmitochondrialfunction.Consistentwiththisobservation,DBItreatmentalsoresultedinasignificantincreaseinROSproductionintheliver(Figure2D),suggestingthatDBI-inducedliverinjuryanddysfunctionmaybeassociatedwithoxidativestress.

DBIactivatesmitochondrialpathwaysofapoptosisintheliver

ToevaluatetheroleofDBI-inducedmitochondrialdysfunctioninlivercellapoptosis,weexaminedtheexpressionofproapoptoticandantiapoptoticproteinsintheliverbywesternblotting.AsshowninFigure3AandB,DBItreatmentresultedinasignificantdecreaseinBcl-2expressionandasignificantincreaseinBaxexpressioninadose-dependentmanner,suggestingthatDBIshiftsthebalancetowardproapoptoticsignaling.

WealsoassessedthereleaseofCytcfromthemitochondriatothecytosol,whichisanimportantstepintheinitiationofapoptosis.ImmunohistochemistryshowedthatDBItreatmentcausedasignificantincreaseinthecytosolicexpressionofCytcinadose-dependentmanner(Figure3CandD),indicatingCytcreleasefromthemitochondria.

WefurtherinvestigatedthedownstreameffectorsofCytcrelease,includingcaspase-3andcaspase-9activation.WesternblotanalysisshowedthatDBItreatmentresultedinasignificantincreaseincleavedcaspase-3andcleavedcaspase-9expressioninadose-dependentmanner(Figure3EandF),suggestingthatDBI-inducedliverinjuryanddysfunctionmaybemediatedbytheactivationofmitochondrialpathwaysofapoptosis.

Discussion

Inthisstudy,weinvestigatedthemechanismofDBI-inducedlivertoxicityinrats,withafocusonmitochondrialpathwaysofapoptosis.WefoundthatDBItreatmentcauseddose-dependentliverinjuryanddysfunction,asevidencedbyelevatedserumlevelsofALTandAST,histologicalchanges,anddecreasedmitochondrialmembranepotential.DBItreatmentalsoresultedinthereleaseofCytcfromthemitochondriaandactivationofcaspase-3andcaspase-9,suggestingthatDBI-inducedliverinjuryanddysfunctionmaybemediatedbymitochondrialpathwaysofapoptosis.

Mitochondrialdysfunctionhasbeenlinkedtothepathogenesisofmanydiseases,includingliverinjury(Liuetal.,2020).Intheliver,mitochondriaplayacrucialroleinenergyproduction,calciumregulation,andapoptosis.Mitochondrialdysfunctioncanleadtooxidativestress,impairedATPproduction,andthereleaseofproapoptoticfactors,includingBax,Cytc,andcaspases(Zhouetal.,2020).

DBIisaTHMthatiscommonlyusedasadisinfectantinswimmingpoolsandotherwatersystems.ExposuretoDBIhasbeenshowntocauselivertoxicityinexperimentalanimalsandisconsideredapotentialhumancarcinogen(Heetal.,2020).However,themechanismofDBI-inducedlivertoxicityisnotwellunderstood.OurstudyprovidesnewinsightsintothepathogenesisofDBI-inducedlivertoxicity,demonstratingthatmitochondrialdysfunctionandactivationofmitochondrialpathwaysofapoptosisplayakeyroleinthisprocess.

Inconclusion,ourstudysuggeststhatDBIinducesliverinjuryanddysfunctioninratsbyactivatingmitochondrialpathwaysofapoptosis,leadingtothereleaseofproapoptoticfactors,oxidativestress,andimpairedmitochondrialfunction.ThesefindingsmayhaveimportantimplicationsforunderstandingthehealtheffectsofTHMsindrinkingwaterandotherenvironmentalexposurestodisinfectionby-products.FurtherstudiesareneededtoelucidatethemolecularmechanismsofDBI-inducedlivertoxicityandtodevelopstrategiesforpreventingormitigatingthisadversehealtheffect。Inadditiontolivertoxicity,DBIshavealsobeenlinkedtothedevelopmentofvariousotherdiseasessuchascancer,reproductiveanddevelopmentaldefects,andneurologicaldisorders.Theunderlyingmechanismsoftheseeffectsarethoughttobemediated,atleastinpart,bytheabilityofDBIstoinduceoxidativestressandDNAdamage.Forexample,studieshaveshownthatincubationofhumancellswithTHMsleadstoanincreaseinDNAdamageandmutations.Thisisbelievedtooccurthroughthegenerationofreactiveoxygenspecies(ROS)andtheinhibitionofDNArepairmechanisms,ultimatelyleadingtogeneticinstabilityandtumordevelopment.

TheroleofDBIsinreproductiveanddevelopmentaldefectsisalsoaconcern,asexposuretothesecompoundsduringcriticalperiodsoffetaldevelopmentmayresultinlong-termdamagetoendocrinefunctionandthereproductivesystem.StudieshaveshownthatexposuretoDBIsduringpregnancycancauselowbirthweight,spontaneousabortions,andreducedfertilityinoffspring.Additionally,experimentalstudieshavedemonstratedthatDBIscandisrupthormonesignalingandleadtochangesinthedevelopmentofthereproductivesysteminanimals.

Finally,exposuretoDBIshasalsobeenlinkedtoneurologicaldisorderssuchasParkinson’sdisease(PD)andAlzheimer’sdisease(AD).StudieshavesuggestedthatDBIsmayplayaroleinthedevelopmentandprogressionofthesediseasesbyinducingoxidativestress,inflammation,andmitochondrialdysfunctioninbraincells.Furthermore,experimentalstudieshaveshownthatexposuretoDBIscancauseneuronaldamageanddegeneration,leadingtotheimpairmentsinmotorandcognitivefunctionobservedinPDandAD.

Overall,thepotentialhealtheffectsofDBIsunderscoretheimportanceofimprovingwatertreatmentprocessestoreducethelevelsofthesecompoundsindrinkingwater.Additionally,furtherstudiesareneededtoelucidatethemechanismsoftoxicityassociatedwithdifferentclassesofDBIsandtodevelopstrategiesforpreventingormitigatingtheadversehealtheffectsofexposuretothesecompounds。Inadditiontotheirpotentialhealtheffectsonhumans,DBIshavealsobeenshowntohavenegativeimpactsontheenvironment.Thesecompoundshavebeendetectedinsurfaceandgroundwaters,aswellasinsedimentandaquaticbiota.Inonestudy,researchersfoundthatDBPswerepresentinover70%ofthesurfacewaterssampledintheUS,withlevelsrangingfromng/Ltoμg/L.

ThepresenceofDBIsintheenvironmentcanhaveseriousimplicationsforaquaticecosystems.Forexample,exposuretoDBPshasbeenassociatedwithdevelopmentalabnormalitiesanddecreasedsurvivalinfishandotheraquaticorganisms.Thesecompoundshavealsobeenshowntointerferewiththephotosynthesisofaquaticplantsandalterthecompositionofmicrobialcommunitiesinaquaticsystems.

Furthermore,theformationofDBIscanalsohaveeconomicconsequences.TheproductionofDBPsduringwatertreatmentcanincreasethecostofwatertreatmentanddistribution,aswellasreducetheeffectivenessofdisinfection.DBIscanalsocausecorrosionofplumbingmaterialsanddecreasethelifespanofwaterinfrastructure.

Toaddresstheseissues,therehasbeenagrowingfocusondevelopingalternativewatertreatmentmethodsthatminimizetheformationofDBIs.Oneapproachistousealternativedisinfectants,suchasozoneorultravioletlight,whichdonotreactwithorganicmatterinthesamewayaschlorine.AnotherstrategyistoremoveprecursorsofDBIs,suchasorganicmatter,beforedisinfection.Additionally,researchersareexploringtheuseofdifferenttreatmenttechniques,suchasmembranefiltrationoractivatedcarbonadsorption,toremoveDBIsfromdrinkingwater.

Inconclusion,DBIsareacomplexanddiverseclassofcompoundsthathaveimportantimplicationsforhumanhealthandtheenvironment.Whilesignificantprogresshasbeenmadeinunderstandingthehealtheffectsofthesecompounds,thereisstillmuchtobelearnedabouttheirmechanismsoftoxicityandwaystopreventormitigatetheiradverseeffects.Asresearcherscontinuetodevelopnewwatertreatmenttechnologiesandstrategies,itisimportanttoconsiderthepotentialhealthandenvironmentalimpactsofDBIsandprioritizethedevelopmentofsafeandeffectivemethodsforprotectingpublichealthandtheenvironment。InadditiontothehealtheffectsofDBPs,therearealsoconcernsabouttheirimpactontheenvironment.Thesecompoundsaredischargedintorivers,lakes,andcoastalwaters,wheretheycanaccumulateinsedimentandaquaticorganisms.StudieshaveshownthatDBPscanbetoxictofish,amphibians,andotheraquaticorganisms,causingdevelopmentalabnormalities,reproductivefailure,andotheradverseeffects.

DBPscanalsoaffecttheoverallqualityofaquaticecosystems,reducingbiodiversityandalteringcommunitystructure.Forexample,somestudieshaveshownthatincreasedlevelsofDBPscanleadtoshiftsinthecompositionofmicrobialcommunitiesinsurfacewaters.Thesechangescanhavecascadingeffectsonecologicalprocessessuchasnutrientcyclingandcarbonstorage.

AnotherpotentialenvironmentalconcernrelatedtoDBPsistheircontributiontoclimatechange.DBPsareasignificantsourceofgreenhousegasemissions,particularlyfromchlorinatedDBPs.Thesecompoundscancontributetothedestructionoftheozonelayerandincreasetheglobalwarmingpotentialoftheatmosphere.

Toaddresstheseenvironmentalconcerns,itisimportanttodevelopwatertreatmenttechnologiesthatnotonlyreduceDBPformationbutalsominimizetheirimpactontheenvironment.Strategiessuchassourcewaterprotection,preventivemanagementpractices,andadvancedtreatmenttechnologiescanallhelpreducetheamountoforganicmatterinsourcewatersthatcontributetoDBPformation.Additionally,effectivemonitoringandmanagementprogramscanhelpminimizethereleaseofDBPsintotheenvironment.

Inconclusion,whileDBPsareaninevitablebyproductofwaterdisinfection,theirpotentialhealtheffects,environmentalimpacts,andcontributiontoclimatechangeunderscoretheneedforcontinuedresearchandinnovationinthefieldofwatertreatment.Byprioritizingthedevelopmentofsafeandeffectivetreatmenttechnologiesandmanagementpractices,wecansafeguardourwaterresourcesandprotectpublichealthandtheenvironmentforfuturegenerations。Inadditiontothechallengesmentionedabove,therearealsoseveralotherfactorsthatcanaffectDBPformationanditsimpactontheenvironmentandpublichealth.Onesuchfactoristhesourceofwater.Differentwatersourcesmayhavedifferentlevelsofimpurities,whichcanaffectthetypesandamountsofDBPsproducedduringthedisinfectionprocess.Forexample,watersourcesthatarerichinorganicmatter,suchasrivers,mayproducemoreDBPsthangroundwatersources.

ThetypesofdisinfectantsusedalsoplayacriticalroleinDBPformation.Chlorineremainsthemostwidelyuseddisinfectantduetoitslowcostandefficacyinkillingwaterbornepathogens.However,chlorinationhasbeenshowntoproducehighlevelsoftrihalomethanes(THMs)andhaloaceticacids(HAAs),whicharetwoofthemostcommonDBPs.Alternativedisinfectants,suchaschloramines,ozone,andultravioletlight,havebeenintroducedtoreducetheformationofTHMsandHAAs.However,thesemethodsmayhavetheirdrawbacks,suchascost,complexity,andeffectivenessagainstemergingcontaminants.

ClimatechangeisanotherfactorthatcanexacerbatethechallengesofDBPs.Warmertemperaturescanincreasethegrowthofalgae,bacteria,andothermicroorganismsinwatersources,leadingtohigherlevelsoforganicmatterandDBPformation.Additionally,increasedwaterdemandduringdroughtsorheatwavesmayleadtochangesinwatertreatmentprocessesthataffectDBPformation.Climatechangecanalsoindirectlyaffectthedistributionandqualityofwaterresources,leadingtochallengesinwatertreatmentanddisinfection.

ToaddressthechallengesofDBPformation,thereisaneedforacomprehensiveapproachthatcombinesscientificresearch,engineeringinnovation,andpolicydevelopment.ResearchshouldcontinuetofocusonunderstandingthesourcesandmechanismsofDBPformation,developingalternativedisinfectionmethods,andevaluatingthehealthandenvironmentalimpactsofDBPs.Engineersshouldworktodevelopandoptimizetreatmenttechnologiesthatarecost-effective,energy-efficient,andenvironmentallysustainable.Policymakersshouldestablishandenforceregulationsthatpromotesafeandsustainablewatertreatmentpracticesandprotectpublichealthandtheenvironment.

Inconclusion,whileDBPsposechallengestowatertreatmentanddisinfection,theyarenotinsurmountable.Throughcollaborationandinnovation,wecandevelopsafeandeffectivewatertreatmentmethodsandmanagementpracticesthatprotectpublichealthandtheenvironment.Bydoingso,wecanensurethatfuturegenerationshaveaccesstoclean,safe,andsustainablewaterresources。Furthermore,publiceducationandawarenesscampaignsaboutthepotentialrisksofDBPsindrinkingwaterarecrucialforpromotingsafeandsustainablewatertreatmentpractices.ThisincludesinformingthepublicaboutwhatDBPsare,howtheyareformed,andthehealthrisksassociatedwithexposuretohighlevelsofthesecompounds.

ItisalsovitaltoinvestinresearchanddevelopmentofnewandinnovativetreatmenttechnologiesthatcaneffectivelyremoveDBPsfromdrinkingwater.Thiscanincludetheuseofadvancedoxidationprocesses,nanotechnology,andengineeredmaterialstoenhancetheremovalofDBPsduringdifferentstagesofwatertreatment.

AnotheressentialaspectofpromotingsafeandsustainablewatertreatmentpracticesistheimplementationofpoliciesandregulationsthatmandatecompliancewithsafeDBPlevelsindrinkingwater.GovernmentsandwaterauthoritiesshouldadoptstringentguidelinesandstandardsforDBPsindrinkingwaterandregularlymonitorandtestwaterqualitytoensurethattheselevelsarenotexceeded.

Inconclusion,thechallengesposedbyDBPsindrinkingwateraresignificant,buttheycanbeaddressedthroughcollaboration,innovation,education,andsoundpolicymeasures.Byworkingtogether,wecandevelopsafeandsustainablewatertreatmentpracticesandprotectthehealthofourcommunitiesandtheenvironment.Itistimetotakeaction

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论