




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22.3实际问题与一元二次方程(第1课时)增长(下降)率问题当前1页,总共17页。教学目标:1、会列一元二次方程解应用题;2、进一步掌握解应用题的步骤和关键;3、通过一题多解使学生体会列方程的实质,培养灵活处理问题的能力.当前2页,总共17页。一、复习列方程解应用题的一般步骤?第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;第二步:找出能够表示应用题全部含义的相等关系;第三步:根据这些相等关系列出需要的代数式(简称关系式)从而列出方程;第四步:解这个方程,求出未知数的值;第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(及单位名称)。当前3页,总共17页。课前热身1:二中小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是a分,第二次月考增长了10%,第三次月考又增长了10%,问他第三次数学成绩是多少?分析:第三次第二次第一次aaX10%a+aX10%=a(1+10%)X10%a(1+10%)+a(1+10%)X10%=a(1+10%)2a(1+10%)当前4页,总共17页。课前热身2:某经济开发区今年一月份工业产值达50亿元,三月份产值为72亿元,问二月、三月平均每月的增长率是多少?解:设平均每月增长的百分率为x,根据题意得方程为50(1+x)2=72
可化为:解得:答:二月、三月平均每月的增长率是20%当前5页,总共17页。有一个人患了流感,经过两轮传染后有121人患了流感,每轮传染中平均一个人传染了几个人?探究1分析:设每轮传染中平均一个人传染了x人开始有一人患了流感,第一轮:他传染了x人,第一轮后共有______人患了流感.第一轮的传染源第一轮后共有________人患了流感.第二轮的传染源第二轮:这些人中的每个人都又传染了x人,第二轮后共有____________________人患了流感.x+1x+11+x+x(x+1)=(x+1)2列方程得1+x+x(x+1)=121x=10;x=-12注意:1,此类问题是传播问题.2,计算结果要符合问题的实际意义.当前6页,总共17页。如果按照这样的传染速度,三轮传染后有多少人患流感?平均每人传染10人,第二轮传染的人数是110人,第三轮为10×121=1210,三轮共传染了1+10+110+1210=1331人三轮传染的总人数为:=1331=11+110+1210(1+x)+x(1+x)+x(1+x)(1+x)当前7页,总共17页。
2003年我国政府工作报告指出:为解决农民负担过重问题,在近两年的税费政策改革中,我国政府采取了一系列政策措施,2001年中央财政用于支持这项改革试点的资金约为180亿元,预计到2003年将到达304.2亿元,求2001年到2003年中央财政每年投入支持这项改革资金的平均增长率?例解:这两年的平均增长率为x,依题有(以下大家完成)180分析:设这两年的平均增长率为x,2001年2002年2003年180(1+x)当前8页,总共17页。试一试1.某乡无公害蔬菜的产量在两年内从20吨增加到35吨.设这两年无公害蔬菜产量的年平均增长率为x,根据题意,列出方程为__________________.3.某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,设二月、三月平均每月增长的百分率为x,根据题意得方程为(
)2.某电视机厂1999年生产一种彩色电视机,每台成本3000元,由于该厂不断进行技术革新,连续两年降低成本,至2001年这种彩电每台成本仅为1920元,设平均每年降低成本的百分数为x,可列方程__________________.20(1+X)2=353000(1-X)2=192050+50(1+x)50(1+X)2=175当前9页,总共17页。两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?分析:容易求出,甲种药品成本的年平均下降额为:_________________________乙种药品成本的年平均下降额为:__________________________________显然,乙种药品成本的年平均下降额较大.但是年平均下降额(元)不等同于年平均下降率(百分数)探究2(5000-3000)÷2=1000(元)(6000-3600)÷2=1200(元)当前10页,总共17页。设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)2元,于是有5000(1-x)2=3000解方程,得:x1≈0.225,x2≈1.7756000(1-y)2=3600设乙种药品的下降率为y列方程解方程,得y1≈0.225,y2≈-1.775根据问题的实际意义,乙种药品成本的年平均下降率约为22.5%甲乙两种药品成本的平均下降率相同,都是22.5%乙种药品成本的年平均下降率是多少?请比较两种药品成本的年平均下降率.根据问题的实际意义,甲种药品成本的年平均下降率约为22.5%当前11页,总共17页。经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?得到的结论就是:甲乙两种药品的平均下降率相同成本下降额较大的药品,它的成本下降率不一定较大不但要考虑它们的平均下降额,而且要考虑它们的平均下降率.当前12页,总共17页。练习:1.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x,列方程()A.500(1+2x)=720B.500(1+x)2=720
C.500(1+x2)=720
D.720(1+x)2=5002.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为
.B当前13页,总共17页。练习3某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1%)
解:设原价为1个单位,每次降价的百分率为x.根据题意,得
解这个方程,得
答:每次降价的百分率为29.3%.
当前14页,总共17页。
类似地这种增长率的问题在实际生活普遍存在,有一定的模式
若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是A,则它们的数量关系可表示为其中增长取“+”,降低取“-”小结注意:(1)1与x的位置不要调换
(2)解这类问题列出的方程一般用直接开平方法当前15页,总共17页。练习4某药品两次升价,零售价升为原来的1.2倍,已知两次升价的百分率一样,求每次升价的百分率(精确到0.1%)解,设原价为元,每次升价的百分率为,根据题意,得
解这个方程,得
由于升价的百分率不可能是负数,所以不合题意,舍去答:每次升价的百分率为9.5%.
当前16页,总共17页。练习5
青山村种的水稻2001年平均每公顷产7200kg,2003年平均每公顷产8450kg,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学校园消防安全教育
- 口腔早期矫正课件
- 毕业设计中期检查
- 2025届河北省正定中学高三下学期第二次模拟考试历史试题(含答案)
- 2025合作协议保险合同样本
- 交通安全主题教育
- 2024-2025统编版道德与法治二年级下册第一单元练习卷及答案
- 2024-2025苏教版科学一年级下册第四单元测试卷及答案
- 2025小学道德与法治教师课标练习卷简答题100题及答案
- 2025高中地理教师课标考试模拟试卷附参考答案
- 小学科学课堂教学设计策略课件
- 中药饮片出库单
- 国开2023春《语言学概论》形考任务1-3+大作业参考答案
- 宿舍楼施工方案方案
- 甲醇-水精馏塔
- 中国话剧史专题知识
- GB/T 15544.1-2023三相交流系统短路电流计算第1部分:电流计算
- GB/T 90.3-2010紧固件质量保证体系
- GB/T 18799-2020家用和类似用途电熨斗性能测试方法
- 科技公司涉密计算机软件安装审批表
- GA/T 1369-2016人员密集场所消防安全评估导则
评论
0/150
提交评论