2022-2023学年安徽省宿州市时村中学数学七年级第二学期期末质量检测模拟试题含解析_第1页
2022-2023学年安徽省宿州市时村中学数学七年级第二学期期末质量检测模拟试题含解析_第2页
2022-2023学年安徽省宿州市时村中学数学七年级第二学期期末质量检测模拟试题含解析_第3页
2022-2023学年安徽省宿州市时村中学数学七年级第二学期期末质量检测模拟试题含解析_第4页
2022-2023学年安徽省宿州市时村中学数学七年级第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年七下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(x-2y)2=(x+2y)2+M,则M=()A.4xy B.-4xy C.8xy D.-8xy2.下列等式中,不成立的是A. B.C. D.3.如图是某农户2018年收入情况的扇形统计图,已知他家2018年的总收入为5万元,则他家的打工收入是()A.0.75万元 B.1.25万元 C.1.75万元 D.2万元4.求1+2+22+23+…+22019的值,可令S=1+2+22+23+…+22019,则2S=2+22+23+…+22019+22020因此2S-S=22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为()A.52019-1 B.52020-1 C. D.5.不等式组x<2x≥-5的解集是(A.x<2 B.x≥-5 C.-5<x<2 D.-5≤x<26.下列事件中是必然事件是()A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上7.下列对实数的说法其中错误的是()A.实数与数轴上的点一一对应 B.两个无理数的和不一定是无理数C.负数没有平方根也没有立方根 D.算术平方根等于它本身的数只有0或18.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程正确的是()A. B. C. D.9.如图,在中,,垂直平分,分别交、于点、,若,则的度数为()A. B. C. D.10.原子是化学反应中不可再分的基本微粒,由原子核和电子组成.某原子的直径约为,可用科学记数法表示为()A. B. C. D.11.下列事件中,随机事件是()A.经过有交通信号灯的路口,遇到红灯B.实心铁球投入水中会沉入水底C.一滴花生油滴入水中,油会浮在水面D.两负数的和为正数12.如图,AC⊥BC,CD⊥AB,则点C到AB所在直线的距离是线段()的长.A.CA B.CD C.CB D.以上都不是二、填空题(每题4分,满分20分,将答案填在答题纸上)13.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克元.14.甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每个面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是_____.15.已知,x+y=﹣5,xy=6,则(x﹣y)2=_____;x﹣y=_____.16.如图是某校学生家庭作业完成时间情况的统计图,若该校作业完成时间在1小时内的学生有300人,则该校作业完成时间在2~3小时的学生有______人.17.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的边长分别为3,4,H为线段DF的中点,则BH=_____________.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)计算:(1);(2)19.(5分)李红在学校的研究性学习小组中负责了解初一年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩

合计

频数

3

27

9

m

1

n

请你结合图表中所提供的信息,回答下列问题:(1)表中m=,n=;(2)请补全频数分布直方图;(3)在扇形统计图中,这一组所占圆心角的度数为度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校初一年级女生掷实心球的成绩达到优秀的总人数.20.(8分)在△ABC中,AB=AC(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由21.(10分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?22.(10分)先化简,再求值已知|x﹣2|+(y+1)2=0,求2x2﹣[5xy﹣3(x2﹣y2)]﹣5(﹣xy+y2)的值.23.(12分)如图:已知AB∥CD,∠ABE与∠CDE的角分线相交于点F.(1)如图1,若∠E=80°,求∠BFD的度数;(2)如图2,若∠ABM=∠ABF,∠CDM=∠CDF,写出∠M与∠BED之间的数量关系,并说明理由;(3)若∠ABM=∠ABF,∠CDM=∠CDF,设∠BED=m°,直接写出用含m°,n的代数式表示∠M=.

参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、D【解析】

根据完全平方公式的运算法则即可求解.【详解】∵(x-2y)2=(x+2y)2+M∴M=(x-2y)2-(x+2y)2=x2-4xy+4y2-x2-4xy-4y2=-8xy故选D.【点睛】此题主要考查完全平方公式的运算,解题的关键是熟知完全平方公式的运算法则.2、D【解析】

根据不等式的性质,对选项进行求解即可.【详解】解:、,故成立,不合题意;、,故成立,不合题意;、,故成立,不合题意;、,故不成立,符合题意.故选:.【点睛】本题考查不等式,熟练掌不等式的性质及运算法则是解题关键.3、B【解析】

扇形统计图中圆代表2018年的总收入,各扇形代表各个小部分的收入.图中的百分比,表示每个部分所占总体的比重.可由各部分的收入=总收入×各部分所占百分比,得到答案.【详解】各部分的收入=总收入×各部分所占百分比即打工收入=5×25%=1.25(万元)故答案为B【点睛】本题解题关键是,理解百分比表示的是,各部分的收入占总收入的比重.4、C【解析】

根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019=故选:C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.5、D【解析】

根据不等式解集的确定方法,大小,小大中间找,即可得出解集.【详解】∵x<2∴解集为:-5≤x<2.故选D.【点睛】此题主要考查了不等式组的解集确定方法,得出不等式解集确定方法是解题关键.6、C【解析】

必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决.【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;B、篮球队员在罚球线投篮一次,未投中,是随机事件,故不符合题意;C、实心铁球投入水中会沉入水底,是必然事件,故符合题意;D、抛出一枚硬币,落地后正面向上,是随机事件,故不符合题意.故选C.7、C【解析】

直接利用实数的相关性质以及平方根、立方根的性质分别判断得出答案.【详解】解:A、实数与数轴上的点一一对应,正确不合题意;B、两个无理数的和不一定是无理数,正确不合题意;C、负数没有平方根,负数有立方根,故此选项错误,符合题意;D、算术平方根等于它本身的数只有0或1,正确不合题意;故选C.【点睛】此题主要考查了实数运算,正确掌握相关性质是解题关键.8、B【解析】

根据图示可得:矩形的宽可以表示为x+2y,宽又是75厘米,故x+2y=75,矩的长可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】解:根据图示可得,故选B.【点睛】本题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.9、D【解析】

根据线段的垂直平分线上的点到线段的两个端点的距离相等得到EA=EB,根据三角形的外角的性质计算即可.【详解】∵DE垂直平分斜边AB,∴EA=EB,∴∠EAB=∠B,∴∠AEC=2∠B,∴∠B+30+∠B+∠B=90,解得,∠B=,故选D.【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10、D【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】数据可用科学记数法表示为,故选:D.【点睛】此题考查科学记数法,解题关键在于掌握一般形式.11、A【解析】分析:在一定条件下,可能发生也可能不发生的事件,称为不确定事件;事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的,据此逐项判断即可.详解:∵经过有交通信号灯的路口,遇到红灯是随机事件,∴选项A符合题意;∵实心铁球投入水中会沉入水底是必然事件,∴选项B不符合题意;∵一滴花生油滴入水中,油会浮在水面是必然事件,∴选项C不符合题意;∵两负数的和为正数是不可能事件,∴选项D不符合题意.故选A.点睛:此题主要考查了随机事件,要熟练掌握,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.12、B【解析】

根据点到线的距离是垂线即可判断.【详解】∵CD⊥AB,点C到AB所在直线的距离是线段CD的长.【点睛】此题主要考查垂线的定义,解题的关键是熟知点到线的距离就是垂线段的长.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、4【解析】解:设商家把售价应该定为每千克x元,根据题意得:x(1-5%)≥3.8,解得,x≥4,所以为避免亏本,商家把售价应该至少定为每千克4元.14、甲【解析】∵1,2,3,4,5,6这六个数字中大于3的数字有3个:4,5,6,∴P(甲获胜)=,∵1,2,3,4,5,6这六个数字中小于3的数字有2个:1,2,∴P(乙获胜)=,∵,∴获胜的可能性比较大的是甲,故答案为:甲.15、1;±1.【解析】

先根据完全平方公式进行变形,再代入求出即可,最后开平方计算即可.【详解】∵x+y=5,xy=6,∴(x﹣y)2=(x+y)2﹣4xy=52﹣4×6=1,∴x﹣y=±1,故答案为:1,±1.【点睛】本题考查了完全平方公式和平方根的定义的运用,能灵活运用公式进行变形是解此题的关键.16、450【解析】

根据题意可知,本题考查扇形统计图的数据计算,根据题干中图中给出的信息“作业完成时间在1小时内的学生有300人”可计算出总人数,然后运用图中在2~3小时的学生比例关系,进行列式计算.【详解】解:由作业完成时间在1小时内的学生占了20%,则,总人数=30020%=1500(人)又作业完成时间在2~3小时的学生占了30%,则,完成时间在2~3小时的学生=150030%=450(人)故答案为450人.【点睛】本题解题关键:理解扇形统计图反应的每一部分占总体的比例关系.17、【解析】

连接BD,BF,由正方形性质求出∠DBF=90〫,根据勾股定理求出BD,BF,再求DF,再根据直角三角形斜边上的中线等于斜边一半求BH.【详解】连接BD,BF,∵四边形ABCD和四边形BEFG是正方形,∴∠DBC=∠GBF=45〫,BD=,BF=,∴∠DBF=90〫,∴DF=,∵H为线段DF的中点,∴BH=故答案为【点睛】本题考核知识点:正方形性质,直角三角形.解题关键点:熟记正方形,直角三角形的性质.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1)9;(2)x6【解析】

(1)根据二次根式的性质,负整数指数幂以及零指数幂的意义即可求出答案.

(2)根据整式的运算法则即可求出答案.【详解】(1)原式=5+(﹣1)+4+1=9(2)原式=﹣27x6y3•(﹣xy2)÷(﹣2xy5)=3x7y5÷(﹣2xy5)=x6【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.19、(1)10,50;(2)作图见解析;(3)72;(4)44人.【解析】试题分析:(1)根据4≤x<5之间的频数和所占的百分比,求出总人数,再用总人数减去其它成绩段的人数,即可得出6≤x<7的频数;(2)根据(1)求出的m的值,从而把频数分布直方图补全;(3)用360度乘以6≤x<7所占的百分比,即可求出6≤x<7这一组所占圆心角的度数;(4)用总人数乘以成绩达到6米或6米以上所占的百分比,求出该校初一年级女生掷实心球的成绩达到优秀的总人数.试题解析:(1)根据题意得:n==50;m=50-3-27-9-1=10;(2)根据(1)得出的m=10,补图如下:(3)6≤x<7这一组所占圆心角的度数为:360°×=72°;(4)根据题意得:200×=44(人),答:该校初一年级女生掷实心球的成绩达到优秀的总人数是44人.考点:1.频数(率)分布直方图;2.用样本估计总体;频数(率)分布表;3.扇形统计图.20、(1)15°;(2)20°;(3)∠BAD=2∠EDC;(4)成立,理由见解析【解析】

(1)根据等腰三角形三线合一,可知∠DAE=30°,再根据AD=AE,可求∠ADE的度数,从而可知答案;(2)同理易知答案;(3)通过(1)(2)题的结论可知∠BAD=2∠EDC,(4)由于AD=AE,所以∠ADE=∠AED,根据已知容易证得∠BAD=2∠EDC.【详解】解:(1)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD=30°∵AD=AE,∴∴∠DEC=90°-∠AD=15°;(2)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD=40°∵AD=AE,∴∴∠DEC=90°-∠ADE=20°;(3)根据前两问可知:∠BAD=2∠EDC(4)仍成立,理由如下:∵AD=AE,∴∠ADE=∠AED∵∠BAD+∠B=∠ADC,∠ADC=∠ADE+∠EDC∴∠ADC=∠AED+∠EDC∵∠AED=∠EDC+∠C∴∠ADC=(∠EDC+∠C)+∠EDC=2∠EDC+∠C又∵AB=AC∴∠B=∠C∴∠BAD=2∠EDC【点睛】本题考查了等腰三角形的三线合一,熟知等腰三角形顶角平分线,底边上的高和中线三线合一是解题的关键.21、解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得,解得x=1.经检验,x=1是方程的解且符合题意.1.5x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.22、5x2﹣8y2,1【解析】

先去括号、合并同类项化简原式,继而根据非负数的性质得出x,y的值,再将x,y的值代入计算可得.【详解】原式=2x2﹣5xy+3(x2﹣y2)﹣5(﹣xy+y2)=2x2﹣5xy+3x2﹣3y2+5xy﹣5y2=5x2﹣8y2,因为|x﹣2|+(y+1)2=0,所以x=2,y=﹣1,所以,原式=5×22﹣8×(﹣1)2=20﹣8=1.【点睛】本题考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论