有趣的数学知识_第1页
有趣的数学知识_第2页
有趣的数学知识_第3页
有趣的数学知识_第4页
有趣的数学知识_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

有趣的数学知识某化肥厂生产一批化肥,原计划每天生产60吨,实际每天比原计划多生产15吨,结果提前6天完成了任务。这批化肥有多少吨?以上的这个题目,对于数学学习中的孩子们来讲,是非常简单的,但是,要想利用这些简单的题目,充分发展孩子的思维,那就需要孩子们从多个角度思考这个题目,下面,小编带给大家这个题目的多种解答,大家一起看看这些解答的思考角度吧。解法一:实际再生产6天完成几吨?(60+15)x6=450(吨)原计划生产多少天?450+15=30(天)这批化肥有多少吨?60X30=1800(吨)解法二:实际与原计划生产天数的比?60:(60+15)=4:5实际生产了多少天?6+(5-4)X4=24(天)计划生产多少天?6+(5-4)X5=30(天)这批化肥有多少吨?60X30=1800(吨)或(60+15)X24=1800(吨)解法三:设实际每天加工x个.(12-2)x=50X12x=6060X30=1800(吨)上面的这三种解法,都是从不同的角度思考的问题,所以,当孩子们在面对同一个问题的时候,即使是一个方面想不通,也不要放弃,要记得从不同的角度进行全方位的思考,只有这样,孩子们才能真正解答问题,并且,能够很好地灵活自己的思维。1.胖子“0”与瘦子“1”在神秘的数学王国里,胖子“0”与瘦子“1”这两个“小有名气”的数字,常常为了谁重要而争执不休。瞧!今天,这两个小冤家狭路相逢,彼此之间又展开了一场舌战。瘦子“1”抢先发言:“哼!胖胖的'0',你有什么了不起?就像100,如果没有我这个瘦子‘1’,你这两个胖‘0’有什么用?”胖子“0”不服气了:“你也甭在我面前耍威风,想想看,要是没有我,你上哪找其它数来组成100呢?”“哟!”“1”不甘示弱,“你再神气也不过是表示什么也没有,看!’1+0’还不等于我本身,你哪点儿派得上用场啦?”“去!’1X0’结果也还不是我,你‘1’不也同样没用!”“0”针锋相对。“你……”"1”顿了顿,随机应变道,“不管怎么说,你‘0’就是表示什么也没有!”“这就是你见识少了。”“0”不慌不忙地说,“你看,日常生活中,气温0度,难道是没有温度吗?再比如,直尺上没有我作为起点,哪有你‘1’呢?”“再怎么比,你也只能做中间数或尾数,如1037、1307,永远不能领头。”“1”信心十足地说。听了这话,“0”更显得理直气壮地说:“这可说不定了,如0.1,没有我这个‘0’来占位,你可怎么办?”眼看着胖子“0”与瘦子“1”争得脸红耳赤,谁也不让谁,一旁观战的其他数字们都十分着急。这时,“9”灵机一动,上前做了个暂停的手势:“你俩都别争了,瞧你们,’1’、’0’有哪个数比我大?”“这……”胖子“0”、瘦子“1”哑口无言。这时,“9”才心平气和地说:“‘1’、’0’,其实,只要你们站在一块,不就比我大了吗?”“1”、“0”面面相觑,半晌才搔搔头笑了。“这才对嘛!团结的力量才是最重要的!”“9”语重心长地说。.蜗牛何时爬上井?一只蜗牛不小心掉进了一口枯井里。它趴在井底哭了起来。一只癞蛤蟆爬过来,瓮声瓮气的对蜗牛说:“别哭了,小兄弟!哭也没用,这井壁太高了,掉到这里就只能在这生活了。我已经在这里过了多年了,很久没有看到过太阳,就更别提想吃天鹅肉了!”蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀,我决不能像它那样生活在又黑又冷的井底里!”蜗牛对癞蛤蟆说:“癞大叔,我不能生活在这里,我一定要爬上去!请问这口井有多深?”“哈哈哈……,真是笑话!这井有10米深,你小小的年纪,又背负着这么重的壳,怎么能爬上去呢?”“我不怕苦、不怕累,每天爬一段,总能爬出去!”第二天,蜗牛吃得饱饱的,喝足了水,就开始顺着井壁往上爬了。它不停的爬呀,到了傍晚终于爬了5米。蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就能爬上去。”想着想着,它不知不觉地睡着了。早上,蜗牛被一阵呼噜声吵醒了。一看原来是癞大叔还在睡觉。它心里一惊:“我怎么离井底这么近?"原来,蜗牛睡着以后从井壁上滑下来4米。蜗牛叹了一口气,咬紧牙又开始往上爬。到了傍晚又往上爬了5米,可是晚上蜗牛又滑下4米。爬呀爬,最后坚强地蜗牛终于爬上了井台。你能猜出来,蜗牛需要用几天时间就能爬上井台吗?.动物中的数学“天才”蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”?蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。.数学家的遗嘱阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二的遗产,我的女儿将得三分之一。”。而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?.统计学家的故事有个从未管过自己孩子的统计学家,在一个星期六下午妻子要外出买东西时,勉强答应照看一下四个年幼好动的孩子。当妻子回家时,他交给妻子一张纸条,上写着:“擦眼泪11次;系鞋带15次;给每个孩子吹玩具气球各5次;每个气球的平均寿命10秒钟;警告孩子不要横穿马路26次;孩子坚持要穿马路26次;我还要再过这样的星期六0次。”数学中的123就跟英语中的ABC一样平凡和简单。然而,按以下运算顺序,就可以观察到这个最简单的黑洞值:设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,例如:1234567890,偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有5个。奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有5个。总:数出该数数字的总个数,本例中为10个。新数:将答案按“偶-奇-总”的位序,排出得到新数为:5510。重复:将新数5510按以上算法重复运算,可得到新数:134。重复:将新数134按以上算法重复运算,可得到新数:123。结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123。换言之,任何数的最终结果都无法逃逸123黑洞。取任意一个4位数(4个数字均为同一个数的除外),将该数的4个数字重新组合,形成可能的最大数和可能的最小数,再将两者之间的差求出来;对此差值重复同样过程,最后你总是至达卡普雷卡尔黑洞6174,至达这个黑洞最多需要7个步骤。例如:大数:取这4个数字能构成的最大数,本例为:4321;小数:取这4个数字能构成的最小数,本例为:1234;差:求出大数与小数之差,本例为:4321-1234=3087;重复:对新数3087按以上算法求得新数为:8730-0378=8352;重复:对新数8352按以上算法求得新数为:8532-2358=6174;结论:对任何只要不是4位数字全相同的4位数,按上述算法,不超过7次计算,最终结果都无法逃出6174黑洞;除了0和1自然数中各位数字的立方之和与其本身相等的只有153、370、371和407(此四个数称为“水仙花数”)。例如为使153成为黑洞,我们开始时取任意一个可被3整除的正整数。分别将其各位数字的立方求出,将这些立方相加组成一个新数然后重复这个程序。除了“水仙花数”外,同理还有四位的“玫瑰花数”(有:1634、8208、9474)、五位的“五角星数”(有54748、92727、93084),当数字个数大于五位时,这类数字就叫做“自幂数”。例如:关于完全平方数有以下几个特点完全平方数是这样一种数:它可以写成一个正整数的平方。例如,36是6X6,49是7X7。从1开始的n个奇数的和是一个完全平方数,即1+3+5+7+…+(2n-1)=n^2;每一个完全平方数的末位数都是0、1、4、5、6中的一个;每一个完全平方数要么能被3整除,要么减去1能被3整除;每一个完全平方数要末能被4整除,要末减去1能被4整除。每一个完全平方数要末能被5整除,要末加上1或减去1能被5整除……(1)100kg的羽毛和100kg的煤炭,哪一个比较重?⑵地上有一个长6m、宽2m、深6m的大洞,请问洞内泥土的体积是多少?(3)一个羽毛球拍和一个球要128元,球拍比球贵120元,那么一个球要多

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论