计算书完成后此次为校区8教学楼的内容包括建筑平面设计_第1页
计算书完成后此次为校区8教学楼的内容包括建筑平面设计_第2页
计算书完成后此次为校区8教学楼的内容包括建筑平面设计_第3页
计算书完成后此次为校区8教学楼的内容包括建筑平面设计_第4页
计算书完成后此次为校区8教学楼的内容包括建筑平面设计_第5页
已阅读5页,还剩96页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ThegraduationdesignforQingdaocampusofshuniversity8#buildingsdesign,designcontentincludingbuildingnedesign,structuredesignandconstructionorganizationdesign.Aftertheaccesstoavarietyofdatatodetermineframelayout,mainpartstructure1)todeterminethestructurescheme.Mainlyreferstotheselectionofthestructureandcomponentlayout.2)theroleandeffectysis.Purposeistocalculatetheinternalsanddeformationofstructure.3)thelimitstatedesign.Purposeisforreinmentstructures,deformationandcrackwidthcalculationwascarriedon.4)thedurabilitydesignandconstructionrequirements.Structureselectionofthebasicprincipleis:ameetstherequirementbconstructionissimple,economicandreasonablecmechanicalperformanceisgood.Intheconstructionofnesizelarge,wanttoconsiderthequestionofwhetherornottosettemperatureexpansionjoints.Thentheinterlayerloadrepresentativevalueiscalculated,usingthemethodofvertexdiscementfromthevibrationcycle,thusthestructureinternalofunderearthquakeload(bendingmoment,shear andaxial).Finallybeam-columninternalysis,calculationoftop,bottom),findoutthemostunfavorablecombinationofinternal.Forflexuralbearingcapacityofnormalsectionandobliquesectionshearbearingcapacitycalculation.Underthecolumnbasedesignandloadcalculation.Finallyselectthelargestbendingshearvaluecalculationofreinmentanddrawing.Intheconstructionorganizationdesignconstructiondeployment,constructionprogressn,work mainmethodsofeachdivisionsubdivisionalwork,toensuretheengineeringqualityoftechnologyorganizationmeasures,ensuresafetycivilizedconstructiontechnologyorganizationmeasuresintheconstructionorganizationdesign,asthekeytoachievetechnically:structuraldesign,seismicdesign,theconstructionorganization目录前 建筑设 工程概 设计原始资 地质条件及地理概 技术经济条 材料选 结构选 结构设 框架计算简图及梁柱线刚 确定框架计算简 框架梁柱的线刚度计 竖向荷载计 恒载标准值计 活荷载标准值计 竖向荷载作用下框架内力计 使用弯矩二次分配法计算框架弯 风荷载计 抗震计 重力荷载代表值计 横向框架侧移刚度的计 横向水平作用下框架结构的内力和侧移计 水平作用下框架位移计算 计算柱的反弯点高度 柱端及梁端弯矩的计 梁端剪力计 各柱轴力计 内力组 截面设计与配筋计 框架梁配筋计 框架柱配筋计算 基础设计与配筋计算 地质条 荷载计 配筋计 施工组织设 工程概 工程概 施工总规 项目组织体 施工部 施工准备及平面布 搭设临 修建临时道路和场 主要施工方 土方工 开挖顺 土方的弃土和回 混凝土工 混凝土的质 现场拌制混凝 混凝土的................................................混凝土的浇 楼板混凝土标高厚度的控制方 试块的制 混凝土的养 施工缝的留 钢筋工 模板工 模 模板配 模板支 脚手架工 砌体工 抹灰工 质量目 抹灰施工准 屋面工 材料要 卷材防水屋面操作工 施工进度计 主要技术组织措 质量保证体系和质量保证措 安全生产保证措 文明施工保证措 降低成本措 结 致 参考文 附 8#向位移的刚度就会减弱。在非区,现浇钢筋混凝土框架结构的最大房屋高度过70米或者是20层。作为专业,必须明确什么是房屋高度。框架结构中,不宜采框架结构进行侧移验算时要会用。此次设计通过给于每个人的工程实例,将自己的建筑面积:4420.4m2室内环境类别(基础(b504200-4500m255设为5层考虑到教学楼的阶梯教室以及房间内最后一级台阶顶面与之的净高≥2.1m600mm,3.9m.山东大学8#教学楼规模设置如下:功能要 数40人普通教 30班左合班(含阶梯)教室3-5计算机教 4教师休息 每层设置一传达 171930125351.11.1f(kPa()(kN/m3厚度(m1——27.6/318.7/439/水文地质概况:最高水位-3m,常年水位-3.6m,无腐蚀性使用环境类别:二a抗震设防烈度为6度设计分组为第三组设计基本加速度值为0.05g交通条件:本工程在郊区,可利用永久性公路,工具为汽车现场水电情况:工地附近有自来水和高压线可供使用选用:建筑安装工程统一劳动,山东省建筑工程预算315~1015C30C25HRB335HPB300240mm240mm×115mm×53mm,重度=18KN/㎡窗:钢塑门窗=0.35KN/㎡门:=0.2KN/120框架梁高度宜取hb=(1/12-1/8),bb=(1/3-1/2)hb框架柱采用正方形柱宜取hc=(1/12-1/6)H0hc≥400mm比要求。基础梁确定框架计算楼面(即层高)3.9m,由此可绘出框架计算简图如下图:2.1主梁取b×h=300mm×600mm基础梁b×h=250mm×400mm中跨梁框架梁柱的线刚度计注:对于框 框取I=2 边框为I=1.5

左边

=EI/l=3.0×107KN/㎡

1×0.3×0.63/6.6m=4.91×104i右边跨=4.91×104KN•m=i

i中跨梁=EI/l=3.0×107KN/㎡×2×12×0.3×/3.6m=9×1041×0.404m31底层柱 ×0.404m3令i左上层柱=1.0,i左右边跨=i中跨梁 i底层柱=恒载标准值防水层(刚性)30厚防水混凝 1.0KN/防水层(柔性)3厚改性沥青卷材防水 找平层:15mm混合砂 0.015m×20KN/m3=0.30KN/找平层:15mmM2.5混合砂 0.015m×20KN/m3=0.30KN/找坡层:20厚水泥砂浆找 0.02m×14KN/m3=0.56KM/保温层:80厚膨胀珍珠岩保温 0.08m×14.5KN/m3=1.16KM/㎡结构承重层:120厚现浇钢筋混凝土板0.12m×25KN/m3=3.00KN/㎡顶棚抹灰层:10厚M5.0混合砂 0.01m×17KN/m3=0.17KN/合计:6.89KN/水磨石地面(10200.65KN/结构承重层:120厚现浇钢筋混凝土板0.12m×25KN/m3=3.00KN/㎡顶棚抹灰层:10M5.00.01m×17KN/m3=0.17KN/合计:3.82KN/现浇水磨石面层,水泥砂浆灌缝30厚1:3干硬性水泥砂浆,面上撒2㎜素水泥浆结合层一 1.16KN/结构承重层:1200.12m×25KN/m3=3.00KN/顶棚抹灰层:10厚M5.0混合砂 0.01×17KN/m3=0.17KN/合计:4.33KN/横梁自 b×h=300㎜×600梁的自重: 25KN/m3×0.3m×(0.6m-0.12m)=3.6KN/m梁抹灰层:10厚混合砂浆0.01m×[(0.6m-合计基础梁b×h=250×400基础梁的自重: 25KN/m3×0.25m×(0.4m-0.12m)=1.75KN/m抹灰层:10厚混合砂 合计连系梁b×h=250㎜×550 25KN/m3柱尺寸b×h=400×400框架柱自重 25KN/m3×0.4m×0.4m=4.0柱侧面抹灰层:10厚混合砂 0.01m×0.4m×4×17KN/m3合计 1.2m×0.24m×18KN/m3=5.18KN/m (3.6m-2.1m)×0.36KN/㎡=0.54KN/m外水泥粉刷外涂涂料:(3.6m-2.1m)×0.5KN/㎡合计纵墙 (5.0-2.1-0.6-0.4)×0.24×18N/m3水泥粉刷外涂涂料外 水泥粉刷内 合计 :3.3m×0.24m×18KN/m32.16(8)合计内隔墙 (5-2.1-0.6-0.4)×0.24×7.5KN/m3水泥粉刷 (5-2.1-0.6-0.4)×2×0.36KN/㎡合计内隔墙 (3.9-0.6)×0.24×7.5KN/m3水泥粉刷 (3.9-0.6-0.4)×2×0.36KN/㎡合计活荷载标准值根据《荷载规范》查得不上人屋面:0.5kN/㎡楼面:2.0kN/㎡走廊:2.5kN/Sk=1.0×0.2kN/㎡=0.2kN/取不上人屋面活荷载与雪荷载的最大值,0.5KN/m2竖向荷载作用下框架内力1)计算单元取④轴线横向框架进行计算,计算单元宽度为7.8m,该框架的楼面荷载根所示,则屋面板传荷载用三角形计算。2.2(2)A-B

6.89kN/㎡×3.3m×850.5×3.3×2×=2.1854.33kN/㎡×3.3×852.0×3.3×2×8梁自重 A-B屋面梁:恒载=横梁自重+屋面板传荷=3.87kN/m+28.42kN/m=32.29活荷载=板传荷 =2.1楼面梁:恒载=梁自重+楼面板传荷 =3.87活荷载=板传荷 8.25屋面恒载 6.89KN/㎡×1.8m×2×5/8 恒载 3.82KN/㎡×1.8m×2 2.0KN/㎡×1.8m×2×5/8=4.5KN/m梁自重 3.87恒载=梁自重+板传荷 活荷载=板传荷 恒载=梁自重+板传荷 活荷载=板传荷 4.5(4)C-DA-B(1100,1000.24m×1.1m×18KN/m3+25KN/㎡0.5KN/㎡6.67kN/m×7.8m+3.87kN/m×(7.8m-0.4m)+6.89顶层柱活荷载=板传荷 =0.5×3.3×0.89×7.8=11.45=7.42kN/m×(7.8m-0.4m)+3.87kN/m×(7.8m-0.4m)+4.33标准层柱活载:板传活 基础顶面恒载=底层外纵墙自重+基础梁自重=10.44kN/m×(7.8m-+2.5kN/m×(7.8m-0.4m)=95.76(6)B3.87kN/m×(7.8m-0.4m)+6.89kN/m×3.3×0.89×7.8m+6.89×1.8m×7.8m×0.89=272.57顶层柱活载=板传荷 =0.5kN/㎡×0.89=22.90标准层柱恒载=梁自重+板传荷载=3.87kN/m×(7.8m-0.4m)+4.33×3.3m×7.8m×0.89+4.33×1.8m×7.8m×0.89=181.94标准层柱活载=板传活载=2.0kN/m2×7.8m×3.3m×0.89+2.0kN/m2=1.9kN/m×(7.8m-0.4m)+9.86kN/m2×(7.8m-0.4m)2.32.4(1)A-B:32.29KN/m标准层:21.73KN/mB-C:19.37KN/m标准层:12.47KN/mC-D:32.29KN/m标准层2.72.8梁端剪力:VVq

AB,BC

ql2Vm梁端弯,Vm

Ml

M右柱轴

NV式中:VP2.9将风载等效为集中荷载,运用以下进行风荷载的计算,可以简化计算步骤W=W(hh) zsz j式中W0—基本风压。W=0.6KN/200z—Bs—风荷载体型系数sz—风振系数,可用T1=0.08N,0.085=0.40.25S,

=1+zhi—下层柱hj1100mm2B—迎风面宽度2.5z利用求风荷载作用下框架侧==2.62~5D ibi-= 2D=icch/(ABCDD kN/m2.7D构件 ibi-=0.5 2D=icch/(ADkN/muj

v

vj-第j层总剪uj-第j jujuju=u 2.8wjvjDujuj54321u=uj侧移验算:层间侧移最大值:1/702< (满足要求风荷载标准值作用下的D用D第im

V=Dim

,V= D

i,i2.9A,Diy500040003000200010002.10B,Ciy50004000300020001000MC=Vim(1MC=Vim

Mb左

i= (M i

c下j

Mc上

ib右j= (M i

Mb总jMc下j1Mc上2.11A,DViD()()/DMc)McMb543212.12B,CViD))/DVMcMcMbMb(KN543212.13层梁端剪力柱轴力ABBCCDABCDVAB-VBC-5--4--3--2--1--重力荷载代表值计屋面永久荷载 50%屋面雪荷载 梁自重 3.87kN/m×(16.8-3×0.4)+3.87×(7.8-一榀框架半层柱自重 一榀框架半层墙自重 合计 梁自重 3.87kN/m×(16.8-3×0.4)+3.87×(7.8-一榀框架上下各半层柱自重 合计:(3) 一榀框架上下半层框架柱自 (3.9/2+5/2)×4.27kN/m×4一榀框架上下各半层墙体自重:总计2.11横向框架侧移刚度的计2.14A/D543212.15B/C截面柱高543212.16层次543212.17对位移位移值54321横向水平作用下框架结构的内力和侧移AD横向作用计算及楼层剪力计T,和影响系数Tg amax=0.04(最大影响系数30m

=a1GeqGeq=0.85因为:Tg<T1=0.745s<5T

h2

g1a=1

g) 21FEK=α1Geq=0.0254因为1.4Tg=1.40.45s=063s<T1=0.745s,其顶部附 作用考虑在内,见下面的表2.14各层横向作用及楼层剪GiHinGkHKi548382811nj—61—△Fn=δnFEK=0.0696下面两个图为各质点水 作用分布图,及楼 剪力沿屋高分布图2.12各质 作用分布图 剪力沿房屋高度分布n水平作用下框架位移计算n框架结构的层间位移ui (ui)Vi/

计算。顶点位移ui按nnui

(ui

计算。计算过程如表(11)表中

e为各层的层间弹性位移角

表2.15横向水平作用下的位移计ujFi/Diutujj53.494321<1/550=1.82103满足式中uh=1/550,采用改进的反弯点法(即D)计算。计算柱的反弯点高度根据上下层高度变化查得修正值y2y3yh=(yoy1y2y32.16中柱(C边柱(D5iaia1同中柱(B同边柱(Ay1y0y1y2y3y2y34iaia1同中柱(B同边柱(Ay1y0y1y2y3y2y33iaia1同中柱(B同边柱(Ay1y0y1y2y3y2y32iaia1同中柱(B同边柱(Ay1y0y1y2y3y2y31iaia1同中柱(B同边柱(Ay1y0y1y2y3y2y3同中柱(B同边柱(A柱端及梁端弯矩的上柱弯矩

=V(1

MD=Vyh

MlbMrbVb/NAND5----4---3--2-1-2.14梁端剪力计2.15各柱轴力计2.16MV,进而计算AB、BC,A、B2.182.19内力基本组合表(2.20(2.21(框柱2.22(框柱2.2312-4-6-2.24承载力调整系数梁框架梁配筋AC1s下部实配 sAB(1: 0.25βbh=0.25×1.0×14.3N/mm2×300mm×560mm=600.6KN>V( 按构造要求配箍,取双肢箍φ8@2502.25层计算----115334433----1114344342.26层5151-600 /SVb-0.7ftbh0 1.25fvh 框架柱配筋计算以第一层框架柱B

cascC30

f14.3Nmm2Nmax(满足要求

/b3650.914所以0.25c =0.25114.3N/mm2400mm365mm=521.95>BN大组合.本满足要求,可不考虑挠度产生的附加弯矩e=ei+h/2-as=51.6mm+400/2- Nfbh2(10.5 346828.6914.340036520.518(10.518AsAs 1c0 b f'(ha' 360(365 第二组内力 满足要求,可不考虑挠度产生的附加弯矩400/30ae400/30a

20mme=ei+h/2-as=45.97mm+400mm/2- Nfbh2(10.5 381.93313.6514.340036520.518(10.518AsAs 1 0 b f'(ha' 360(365 综合两组内力的计算结果,320(AA B1层最不利组合:剪跨比 所以(V fbhAsV

1 f

270N/mm2yvB5层:e0/h0=65.82mm/360mm=0.183<0.55,基础设计与配筋计算地质2.27概况:本工程以一榀框架结构的B持力层,以下部分为下卧层。根据地质条件基础埋深为2.1m,基础高度为1m。C25f=11.9N/mm2.HRB335,f300N/mm2.黏土γ 回填土γG=17.8荷载1.a.27层厚用C10混凝土100mm,自基础宽度左右两边各沿伸出100㎜. Ao

NkfaG

333.5220a=b=2.8m<3m,无须宽度修正.N

Gk=20×2.8×2.8×2.1=329.28Mk=158.03kN

Nk=1426.67

Vk=11.79ek

Mkk

l 6Pk,maxNkGk(16ek) k,minPPk,maxPk,min=223.89 Pk,max=266.43Pa,Pk,min=181.35kPa,PkPk=223.89kPa<faPk,max=266.43kPa<fa<1.2Pk,min取as=60h0=1000-60=940C25at

=400ab=400+2×940=2280am=(2280+400)/2=1340

A(lach)b(bbch

=取0.7hft(

=1119.78kN>

2.17A配筋基础受力钢筋采用HRB335级 ))钢

综上所述:两个方向都选用分布 16@120(As=1676mm2)选用:10@200,

393mm2360mm2(满足要求2.18工程18#23、建筑面积施工总规工期:7项目组织体施工1、先(地基与基础、后地上(主体。先完成设施的敷设,如管道,215构(外墙,门窗)3搭设22必须将生活区与施工区分开但是两者之间的距离不要太远作为、4、施工机具。大型吊装机械需用两台起重量分别为60t和80t的起重机,5、所需要的钢材,木材,水泥三大材料,施工单位必须提前解决,避修建临时道路和场对于教学楼工程的临时道路和钢筋加地,先铺一层300厚土渣,再在上面铺200厚碎石,最后在它的上面浇筑100mmC20细石混凝土,让场地更加的土方开挖在挖槽和钎探中若发现有软卧地基时,此时应该采取地基加固处理,加方法基坑的时间不宜过长挖好坑应及时清理清理之后及时浇筑混凝土,土方的弃土和回混凝土的质混凝土有多种强度等级。教学楼工程采用的是C30强度等级的,基础混凝土C25的质量关键还是要养护好我国采用150×150×450的棱柱体作为抗压强度现场拌制混ABCDE混凝采用单轮手推车自卸汽车主体垂直为塔式起重机混凝土泵注意:运距较小时,可以用单轮手推车来混凝土,运距较大时,就选自卸汽车速度比较快,适用于运量大而且运距远时。搅拌站采用搅拌混凝土的浇楼板混凝土标高厚度的控制方“三程序控“试块的制150mm骨料最大粒径试块边长混凝土的养12施工缝的留1钢筋工程采用热轧带肋钢筋HRB335箍筋采用HPB300.钢筋在使用之前,要经过调直,除锈,下料切断,弯曲成形等步骤。180度弯钩的钢筋增加长度是3、柱子,墙的竖向钢筋连接采用机械,梁板的带肋钢筋采用电渣压力焊。雨天雪天不宜进行焊接。注意:电渣压力焊适用于直径14-32mm的HRB335,HRB40014-20mmHPB2354、钢筋的绑扎一般采用20-22号钢丝或镀锌钢丝,钢丝不宜过硬,要绑扎模8#教学楼工程模板采用压型钢模,柱模板底部应留有清理孔,柱2m模板80mm,80mm.B4,H5模板0.80.4米之间任意调18#30采用φ48×3.5,达到建筑顶部。脚手架底部要垫竹筏板。脚手架高度120mm3、墙底部应砌≥200mm451235、6质量抹灰施工准材料要找平层:1:3SBS80厚憎水型膨胀珍珠岩保温块由乙方自己,与材料承包商签订材料合同。外采用丙烯酸涂料,丙烯酸涂料的价格便宜,普遍采用。卷材防水屋面操作11:8,35mm20mm.23%3(施工时必须注意:在屋面800mm内铺贴卷材防水时应采用满粘法,常用方式:a浅色反射涂料保护层b屋面坡度必须准确。平整度过5mm。 2m715030质量保证体系和质量保证青建总公司是一家集工程总承包房地产开发与经营于一体的大型综合安全生产保证措网,同时在楼层出处设置安全通道及围护设施。2项目技术指导施工时也应该注重安全生产始终要坚“安全第一”的原则与目标为施工人员安全教育方面的知识并定期进行安全检查拌机,钢筋切断机,汽车等,保证施工顺利进行。46文明施工保证措3412、增收节支,减少的支345、模板作为周材料,保管好可重复使用6、对于物资的采购、要提前做好准备,施工现场管理工作非常重要,尽可7两个多月的教学楼设计结束了,这也意味着大学四年接近尾声。时间总是悄土木工程施工等学科学校也为毕业生安排每周八的指导课每位前去馆复习了专业知识相关,并查阅了相关设计规范。如《混凝土结构设计规范《建筑抗震设计规范《地础设计规范《建筑结构荷载规范》CADCAD接着是结构设计计算老师要求我们每周上八若遇到困惑时,老师会细心的给我们讲解并且和我们一起学习。毕业设计结束,我们利用PKPM进行梁柱配筋图的绘制,所有图纸的修改工作和计算书的整理。此次毕业(1(2(3(4通过这次的设计让我学到很多的同时了一下自己感觉到自己在某些方断的督促鼓励我们,记得老师一句话:要且学且设计。的确如此,设计(1)刘绍昆.徐光霞.模板工程安全·操作·技术.:中国建材工业李国强.李杰.苏小卒编著.建筑结构抗震设计.第二版.中国建筑工业高福聚.编著.多层与建筑结构设计.大学华南理工大学.浙江大学.湖南大学合编.基础工程.中国建筑工业东南大学.同济大学.合编.混凝土结构.中国建筑工业白顺果.崔自治.党进谦主编.土力学.中国水利水电建筑地础设计规范GB50007-2011(8)GB50011-2010(9)GB50009-2012(10)GB50010-2010(11)GB/T50001-StructuralSystemstoresist monlyUsedstructuralZahaWithloadsmeasuredintensofthousandskips,thereislittleroominthedesignofhigh-risebuildingsforexcessivelycomplexthoughts.Indeed,thebetterhigh-risebuildingscarrytheuniversaltraitsofsimplicityofthoughtandclarityofexpression.Itdoesnotfollowthatthereisnoroomforgrandthoughts.Indeed,itiswithsuchgrandthoughtsthatthenewfamilyofhigh-risebuildingshasevolved.Perhapsmoreimportant,thenewconceptsofbutafewyearsagohave ecommonceintoday’stechnology.Omittingsomeconceptsthatarerelatedstrictlytothematerialsofconstruction,themostcommonlyusedstructuralsystemsusedinhigh-risebuildingscanbecategorizedasfollows:Moment-resistingBracedframes,includingeccentricallybracedShearwalls,includingsteelteshearTube-in-tubeTube-in-tubeCore-inctiveCellularorbundled-tubeParticularlywiththerecenttrendtowardmorecomplexforms,butinresponsealsototheneedforincreasedstiffnesstoresistthesfromwindandearthquake,mosthigh-risebuildingshavestructuralsystemsbuiltupofcombinationsofframes,bracedbents,shearwalls,andrelatedsystems.Further,forthetallerbuildings,themajoritiesarecomposedofinctiveelementsinthree-dimensionalarrays.Themethodofcombiningtheseelementsistheveryessenceofthedesignprocessforhigh-risebuildings.Thesecombinationsneedevolveinresponsetoenvironmental,functional,andcostconsiderationssoastoprovideefficientstructuresthatprovokethearchitecturaldevelopmenttonewheights.Thisisnottosaythatimaginativestructuraldesigncancreategreatarchitecture.Tothecontrary,manyexamplesoffinearchitecturehavebeencreatedwithonlymoderatesupportfromthestructuralengineer,whileonlyfinestructure,notgreatarchitecture,canbedevelopedwithoutthegeniusandtheleadershipofatalentedarchitect.Inanyevent,thebestofbothisneededtoformulateatrulyextraordinarydesignofahigh-risebuilding.Whilecomprehensivediscussionsofthesesevensystemsaregenerallyavailableintheliture,furtherdiscussioniswarrantedhere.Theessenceofthedesignprocessisdistributedthroughoutthediscussion.Moment-ResistingPerhapsthemostcommonlyusedsysteminlow-tomedium-risebuildings,themoment-resistingframe,ischaracterizedbylinearhorizontalandverticalmembersconnectedessentiallyrigidlyattheirjoints.Suchframesareusedasastand-alonesystemorincombinationwithothersystemssoastoprovidetheneededtohorizontalloads.Inthetallerofhigh-risebuildings,thesystemislikelytobefoundinappropriateforastand-alonesystem,thisbecauseofthedifficultyinmobilizingsufficientstiffnessunderlals.ysiscanbe plishedbySTRESS,STRUDL,orahostofotherappropriatecomputerprograms;ysisbytheso-calledportalmethodofthecantilevermethodhasnoceintoday’stechnology.Becauseoftheintrinsicflexibilityofthecolumn/girderintersection,andbecausepreliminarydesignsshouldaimtohighlightweaknessesofsystems,itisnotunusualtousecenter-to-centerdimensionsfortheframeinthepreliminaryysis.Ofcourse,inthelatterphasesofdesign,arealisticappraisalin-jointdeformationisessential.BracedThebracedframe,intrinsicallystifferthanthemoment–resistingframe,findsalsogreaterapplicationtohigher-risebuildings.Thesystemischaracterizedbylinearhorizontal,vertical,anddiagonalmembers,connectedsimplyorrigidlyattheirjoints.Itisusedcommonlyinconjunctionwithothersystemsfortallerbuildingsandasastand-alonesysteminlow-tomedium-risebuildings.Whiletheuseofstructuralsteelinbracedframesiscommon,concreteframesaremorelikelytobeofthelarger-scalevariety.OfspecialinterestinareasofhighseismicityistheuseoftheeccentricbracedAgain,ysiscanbebySTRESS,STRUDL,oranyoneofaseriesoftwo–orthreedimensionalysiscomputerprograms.Andagain,center-to-centerdimensionsareusedcommonlyinthepreliminaryysis.ShearTheshearwallisyetanotherstepforwardalongaprogressionofever-stifferstructuralsystems.Thesystemischaracterizedbyrelativelythin,generally(butnotalways)concreteelementsthatprovidebothstructuralstrengthandseparationbetweenbuildingfunctions.Inhigh-risebuildings,shearwallsystemstendtohavearelativelyhighaspectratio,thatis,theirheighttendstobelargecomparedtotheirwidth.Lackingtensioninthefoundationsystem,anystructuralelementislimitedinitsabilitytoresistoverturningmomentbythewidthofthesystemandbythegravityloadsupportedbytheelement.Limitedtoanarrowoverturning,Oneobvioususeofthesystem,whichdoeshavetheneededwidth,isintheexteriorwallsofbuilding,wheretherequirementforwindowsiskeptsmall.Structuralsteelshearwalls,generallystiffenedagainstbucklingbyaconcreteoverlay,havefoundapplicationwhereshearloadsarehigh.Thesystem,intrinsicallymoreeconomicalthansteelbracing,isparticularlyeffectiveincarryingshearloadsdownthroughthetallerfloorsintheareasimmediayabovegrade.Thesystemhasthefurtheradvantageofhavinghighductilityafeatureofparticularimportanceinareasofhighseismicity.Theysisofshearwallsystemsismadecomplexbecauseoftheinevitablepresenceoflargeopeningsthroughthesewalls.Preliminaryysiscanbebytruss-ogy,bythefiniteelementmethod,orbymakinguseofaproprietarycomputerprogramdesignedtoconsiderthe ction,orcoupling,ofshearFramedorBracedTheconceptoftheframedorbracedorbracedtubeeruptedintothetechnologywiththeIBMBuildinginPittsburgh,butwasfollowedimmediaywiththetwin110-storytowersoftheWorldTradeCenter,NewYorkandanumberofotherbuildings.Thesystemischaracterizedbythree–dimensionalframes,bracedframes,orshearwalls,formingaclosedsurfacemoreorlesscylindricalinnature,butofnearlyanynconfiguration.Becausethosecolumnsthatresistlalsarecedasfaraspossiblefromthecancroidsofthesystem,theoverallmomentofinertiaisincreasedandstiffnessisveryhigh.Theysisoftubularstructuresisdoneusingthree-dimensionalconcepts,orbytwo-dimensionalogy,wherepossible,whichevermethodisused,itmustbecapableofaccountingfortheeffectsofshearlag.Thepresenceofshearlag,detectedfirstinaircraftstructures,isaseriouslimitationinthestiffnessofframedtubes.Theconcepthaslimitedrecentapplicationsofframedtubestotheshearof60stories.Designershavedevelopedvarioustechniquesforreducingtheeffectsofshearlag,mostnoticeablytheuseofbelttrusses.Thissystemfindsapplicationinbuildingsperhaps40storiesandhigher.However,exceptpossibleaestheticconsiderations,belttrussesinterferewithnearlyeverybuildingfunctionassociatedwiththeoutsidewall;thetrussesarecedoftenatmechanicalfloors,mushtothedisapprovalofthedesignersofthemechanicalsystems.Nevertheless,asacost-effectivestructuralsystem,thebelttrussworkswellandwilllikelyfindapprovalfromdesigners.Numerousstudieshavesoughttooptimizethelocationofthesetrusses,withtheoptimumlocationverydependentonthenumberoftrussesprovided.Experiencewouldindicate,however,thatthelocationofthesetrussesisprovidedbytheoptimizationofmechanicalsystemsandbyaestheticconsiderations,astheeconomicsofthestructuralsystemisnothighlysensitivetobelttrusslocation.Thetubularframingsystemmobilizeseverycolumnintheexteriorwallinresistingover-turningandshearings.Theterm‘tube-in-tube’islargelyself-exnatoryinthatasecondringofcolumns,theringsurroundingthecentralservicecoreofthebuilding,isusedasaninnerframedorbracedtube.Thepurposeofthesecondtubeistoincreasetooverturningandtoincreaselalstiffness.Thetubesneednotbeofthesamecharacter;thatis,onetubecouldbeframed,whiletheothercouldbebraced.Inconsideringthissystem,isimportanttounderstandclearlythedifferencebetweentheshearandtheflexuralcomponentsofdeflection,thetermsbeingtakenfrombeamogy.Inaframedtube,theshearcomponentofdeflectionisassociatedwiththebendingdeformationofcolumnsandgirders(i.e,thewebsoftheframedtube)whiletheflexuralcomponentisassociatedwiththeaxialshorteningandlengtheningofcolumns(i.e,theflangesoftheframedtube).Inabracedtube,theshearcomponentofdeflectionisassociatedwiththeaxialdeformationofdiagonalswhiletheflexuralcomponentofdeflectionisassociatedwiththeaxialshorteningandlengtheningofFollowingbeamogy,ifnesurfacesremainne(i.e,thefloorslabs),thenaxialstressesinthecolumnsoftheoutertube,beingfartherformtheneutralaxis,willbesubstantiallylargerthantheaxialstressesintheinnertube.However,inthetube-in-tubedesign,whenoptimized,theaxialstressesintheinnerringofcolumnsmaybeashigh,orevenhigher,thantheaxialstressesintheouterring.Thisseeminganomalyisassociatedwithdifferencesintheshearingcomponentofstiffnessbetweenthetwosystems.Thisiseasiesttounder-standwheretheinnertubeisconceivedasabraced(i.e,shear-stiff)tubewhiletheoutertubeisconceivedasaframed(i.e,shear-flexible)Core ctiveCoreinctivestructuresareaspecialcaseofatube-in-tubewhereinthetwotubesarecoupledtogetherwithsomeformofthree-dimensionalspaceframe.Indeed,thesystemisusedoftenwhereintheshearstiffnessoftheoutertubeiszero.TheUnitedStatesSteelBuilding,Pittsburgh,illustratesthesystemverywell.Here,theinnertubeisabracedframe,theoutertubehasnoshearstiffness,andthetwosystemsarecouplediftheywereconsideredassystemspassinginastraightlinefromthe“hat”structure.Notethattheexteriorcolumnswouldbeimproperlymodelediftheywereconsideredassystemspassinginastraightlinefromthe“hat”tothefoundations;thesecolumnsareperhaps15%stifferastheyfollowtheelasticcurveofthebracedcore.Notealsothattheaxialsassociatedwiththelalsintheinnercolumnschangefromtensiontocompressionovertheheightofthetube,withtheinflectionpointatabout5/8oftheheightofthetube.Theoutercolumns,ofcourse,carrythesameaxialunderlalloadforthefullheightofthecolumnsbecausethecolumnsbecausetheshearstiffnessofthesystemisclosetozero.Thespacestructuresofoutriggergirdersortrusses,thatconnecttheinnertubetotheoutertube,arelocatedoftenatseverallevelsinthebuilding.TheAT&Theadquartersisanexampleofanastonishingarrayofinctiveelements:Thestructuralsystemis94ft (28.6m)wide,196ft(59.7m)long,and601ft(183.3m)high.Twoinnertubesareprovided,each31ft(9.4m)by40ft(12.2m),centered90ft(27.4m)apartinthelongdirectionofthebuilding.Theinnertubesarebracedintheshortdirection,butwithzeroshearstiffnessinthelongdirection.Asingleoutertubeisd,which

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论