




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
32,732,71义种运算a
a
a
()
则函数
f()
2x(x
的解析式为
()A.
f(x
,x
B.
f(x)
x
x
C.
f()
4x
x
.
f()
4x
x
2.已知函数)是(
上的偶函数,若对于x,有((
,且当
时,
f(x)xf2010)
的值为A.-2B.-1.D.23.知以4为期的函数
,x1,1]f(x)x
,其中。若方程3f()
恰有5个数解,则
的取值范围为()A.
15,3
B.
(
7)
8C.()3
D.
4.函数f()
在区间[
上是增函数,且f,x[
时,函数f(
at对切[
恒成立,则实数t的取值范围是()A.
B.
t5
f
是定义在同一区间
函数
yf
在x
上有两个不同的零点,则称
f间”.若
f
与
在
上是“关联函数”,则
的取值范围为()A.
9,4
B.
C.
试卷第1页,总页
D.
,
6.已知函数
xfx
在R
上有两个零点,则a的取值范围是()A.
B.
C.
D.
7.函数
f
、偶函数
的图象分别如图1、2所,程
f
,
的实根个数分别为
a
、
,则
等于()
1
1-1
1
-2
-1
2
-11
-12A.
B.
C.
D.
8.设f)
是定义在
上的偶函数,且
fxf(2)
,当
时,f(x))
,若在区间
内关于的程
f(xx0有个不同的实数根,则实数
a(0,a
的取值范围是A.
,1)
B.
(1,4)
C.
(1,8)
D.
(8,(x2)9数f(x)()xx2)2
是R上单调递减函数数a的值范围()13A.∞2)B.(-∞,.(0,2).[,2)810知数f()
,afb
a2a
2
的最小值等A.
2
B.
5
C.
23
D.
23试卷第2页,总页
abk,abk,11.知函数fx)a0)
,定义函数
F(x)
f(xx0,xx0.
给出下列命题①
Fx)fx)
;②数(
是奇函数;③当时,若,m
,总Fm)F()0成立,其中所有正确命题的序号是)A.②B.①②C.③D.③则k的为()12.根据表格中的数据,可以判定方程(1)A.-1B.C.
x
0
的一个根所在的区间为D.2x-1
0
1
2
3
x
0.37
1
2.72
7.39
20.09x+2
1
2
3
4
513.合A={3,,,6,7},那么可建立从A的射个数是__________,从B到A的射个数__________.14.知f值__________
其中为数,且.若f(x)()为常数,则的2x15.若不等式(m
2
1)2
对切(成立,则实数m的取值范围是.16.已知函数fxa
2
)
(a0,a
),如果f
-
fb4
=8
么f
fb4
的值是.17已知函数
f(x满fa
a
a2
(
,其中a且()于数
f(x,当(
时,
f)(1),实数m的取值集合()
(,f(x)
的值恒为负数,求a的值范围18.知函数
f(x)
x
:试卷第3页,总页
(1)若函数在区间
q
的取值范围;(2)问:是否存在常数t(t0),x
时,x)
的值域为区间,D长度为
12
.19)等式axx
对一切
R恒立,求实数a
的取值范围;试卷第4页,总页
x(2)已知f()x
是定义在(
(0,
上的奇函数,当x0,f(x2l
f)
的解析式.20.知函数f
;
g()
11
.试
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业礼仪培训体系构建与实战应用
- 纺织品的智能库存管理考核试卷
- Photoshop CC 2019中文版标准教程(第8版)课件 第5章 绘制或修饰图像
- 纤维素纤维在造纸工业的替代策略考核试卷
- 电气设备在风力发电机组控制系统中的应用考核试卷
- 糕点行业电子商务运营与网络营销考核试卷
- 【部编版】四年级语文下册口语交际《朋友相处的秘诀》精美课件
- 海洋工程装备海洋矿产资源开发考核试卷
- 模具制造中的物联网与大数据分析考核试卷
- 践行游戏精神 优化课程实施
- GB 7718-2025食品安全国家标准预包装食品标签通则
- 2025年高考历史总复习世界近代史专题复习提纲
- 2025-2030中国蜂蜜行业营销渠道与多元化经营效益预测研究报告
- 内蒙古汇能集团笔试题库
- 产后保健知识课件
- 氧化反应工艺安全操作规程
- 子宫肌瘤病例讨论
- 门窗安装施工方案07785
- 2025年应急管理普法知识竞赛题(附答案)
- 土壤氡检测方案
- 氧化镓雪崩光电探测器的研究进展
评论
0/150
提交评论