欧洲委员会-能源转型中的区块链解决方案(英)-_第1页
欧洲委员会-能源转型中的区块链解决方案(英)-_第2页
欧洲委员会-能源转型中的区块链解决方案(英)-_第3页
欧洲委员会-能源转型中的区块链解决方案(英)-_第4页
欧洲委员会-能源转型中的区块链解决方案(英)-_第5页
已阅读5页,还剩72页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Blockchainsolutions

fortheenergytransition

Experimentalevidenceand

policyrecommendations

FulliG.,NaiFovinoI.

AndreadouN.,GeneiatakisD.,GiulianiR.,

JoannyG.,KotsakisV.,KounelisI.,

LucasA.,MartinT.,O'NeillG.,SachyM.,

SoupionisY.,SteriG.

2022

EUR31008EN

ABOUTJRC

ThispublicationisaScienceforPolicyreportbytheJointResearchCentre(JRC),theEuropeanCommission’sscienceandknowledgeservice.Itaimstoprovideevidence-basedscientificsupporttotheEuropeanpolicymakingprocess.ThescientificoutputexpresseddoesnotimplyapolicypositionoftheEuropeanCommission.NeithertheEuropeanCommissionnoranypersonactingonbehalfoftheCommissionisresponsiblefortheusethatmightbemadeofthispublication.ForinformationonthemethodologyandqualityunderlyingthedatausedinthispublicationforwhichthesourceisneitherEurostatnorotherCommissionservices,usersshouldcontactthereferencedsource.ThedesignationsemployedandthepresentationofmaterialonthemapsdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheEuropeanUnionconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.

Contactinformation:jrc-e3-secretariat@ec.europa.eu

EUScienceHub:https://joint-research-centre.ec.europa.eu/

JRC128651

EUR31008EN

PDFISBN978-92-76-49089-0ISSN1831-9424doi:10.2760/62246

Luxembourg:PublicationsOfficeoftheEuropeanUnion,2022

©EuropeanUnion,2022

ThereusepolicyoftheEuropeanCommissionisimplementedbytheCommissionDecision2011/833/EUof12December2011onthereuseofCommissiondocuments(OJL330,14.12.2011,p.39).Exceptotherwisenoted,thereuseofthisdocumentisauthorisedundertheCreativeCommonsAttribution4.0International(CCBY4.0)licence(/licenses/by/4.0/).Thismeansthatreuseisallowedprovidedappropriatecreditisgivenandanychangesareindicated.ForanyuseorreproductionofphotosorothermaterialthatisnotownedbytheEU,permissionmustbesoughtdirectlyfromthecopyrightholders.

Allcontent©EuropeanUnion,2022

Howtocitethisreport:FulliG.,NaiFovinoI.AndreadouN.,GeneiatakisD.,GiulianiR.,JoannyG.,KotsakisV.,KounelisI.,LucasA.,MartinT.,O'NeillG.,SachyM.,SoupionisY.,SteriG.,Blockchainsolutionsfortheenergytransition:experimentalevidenceandpolicyrecommendations,EUR31008EN,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2022,ISBN978-92-76-49089-0,doi:10.2760/62246,JRC128651.

I

TABLEOFCONTENTS

ACKNOWLEDGEMENTS1

ABSTRACT2

EXECUTIVESUMMARY3

1.INTRODUCTION6

2.WHATISENERGYDIGITALISATIONANDWHYISITIMPORTANT?7

2.1Impactofdigitalisationonenergydemand8

2.2Impactofdigitalisationonpowersupply9

2.3Impactoffulldigitalinterconnectionofenergysystems9

3.BLOCKCHAINTECHNOLOGIES,DIGITALDECADEANDGREENDEAL10

4.HOWBLOCKCHAINCANSUPPORTENERGYDIGITALISATION14

5.ENERGYINDUSTRYBLOCKCHAINPILOTINGLANDSCAPE15

6.MOSTPROMISINGUSE-CASESANDEXPERIMENTALRESULTS19

6.1Smartmetering,billingandsecurity20

6.2Fosteringofenergycommunities20

6.3Certificationoforiginofenergyproduction22

6.4Supporttheimplementationofflexibilityservices23

6.5Electromobilityscenarios24

6.6Use-Casedeploymentandresults25

7.CONCLUSIONS28

7.1Trends,issuesandlessonslearned28

7.2Policyandregulatoryrecommendations30

7.3Finalremarks33

REFERENCES34

Listofabbreviations36

Listoffigures37

1

ACKNOWLEDGEMENTS

WewouldliketothankourDGENERcolleagues,ManuelSanchezJimenezandConstantinaFiliou,forinvitingustoundertakethisinterestingandchallengingproject.

WealsowishtothankourECcolleaguesCharlesCleretdeLangavant(ENER),LukasRepa(CNECT),EnriqueArestiGutierrezandLuisMiguelVegaFidalgo(GROW),HelenaHernnas(ECFIN),AlexandruCiungu(ECFIN)andAsaLindenOhannesson(ECFIN)fortheircommentsandfeedbackprovidedatdifferentstagesofdraftingofthisdocument.

OurgratitudegoesalsotoMarceloMaseraandJean-PierreNordvik(JRC)fortheircontinuoussupportthroughoutthewholeprojectexecution.

Finally,thankstootherJRCcolleaguesCarineNieuweling,DimitriosThomasandAnnaMengolinifortheirassistance,commentsandinsights,andMassimilianoGusminiforhisgraphicdesignsupport.

Authors

Editingteam:IgorNaiFovino,GianlucaFulli,GillianO'Neill

Projectteam:NikoletaAndreadou,DimitriosGeneiatakis,RaimondoGiuliani,GeraldineJoanny,VangelisKotsakis,IoannisKounelis,AlexandreLucas,TaniaMartin,MarcoSachy,YannisSoupionis,GarySteri,

2

ABSTRACT

ThisreportsummarisesthemainoutcomesofseveralexperimentalstudiescarriedoutbytheJointResearchCentreonblockchainsolutionsforenergysystems.ItpresentsconsiderationsandrecommendationsforEuropeanpolicymakersregardingblockchaindeploymentacrosstheenergyvaluechain.

Theoutcomesofthisreportcomefromamulti-yearprojectfundedthroughanexplicitrequestoftheEuropeanParliamenttotheEuropeanCommission,withexperimentsconductedintheJointResearchCentresmartgridsandcybersecuritylaboratories.

3

EXECUTIVESUMMARY

Europe’sfuturewillbestronglyinfluencedbythesuccessfulachievementofthetwindigitalandgreentransitions.TheCovid-19pandemiccrisishasclearlymagnifiedtherolethatdigitalandenergytechnologieshaveonpeople,businessesandtheeconomy.Wesawhowheavilywerelyondigitalandenergysolutionstoenableustotelework,heatourhomes,manageourhospitals,andrunourbusinesses.MonitoringtheevolutionofdigitaltechnologiestoidentifythemostpromisinganddisruptiveonesisofprimaryimportanceintheefforttosupportandspeeduptheraceoftheEuropeanUniontowardsagreenerandmoresustainablefuture.

Anemergingtechnologytosupportthetwindigitalandgreentransitions

Amongthemanydigitaltechnologiesinuseandindevelopment,blockchaintechnologies¹areprovingthattheyhavealottoofferinsupportingandstreamliningevidence-baseddecision-makinginthefieldsofclimateandsustainableenergy.Blockchaincanbeimaginedasanelectronicregisterdistributedoveramyriadofcomputersandnodes,whereeachnodecanupdateandstoreacopyoftheregister.

Somereasonswhyblockchainisappealingforapplicationsintheclimateandenergysectorsare:

•Disintermediation:Currentlymostoftheworlds’financial,energyandotheroperationsareenabledbyintermediariessuchasbanksandmarketoperators.Blockchainremovestheneedforsuchtrustedthirdpartiestooverseeandvalidateinformation/valueexchanges.

•Transparencyandverifiability:transactionsre-cordedonablockchainareabletobecheckedindependently.Illicittransactionsaredetectedandexcludedfromtheblockchain,renderingitimpossibleforthepartiesinvolvedtoperformmaliciousoperations.

•Immutabilityandsecurity:itisalmostimpos-sibletomodifyortamperwithinformationrecordedonablockchain(evenwhenmanynodesareattackedatthesametime).

State-of-playofblockchainintheenergysector

In2018,theEuropeanParliamentrequestedtheCommissiontoinvestigatetheimpactofblockchainontheenergysector.TheJointResearchCentre(theEuropeanCommission’sscienceandknowledgeservice)consequentlyconductedadesktopandexperimentalprojectanalysisofhowblockchaincanenable,andpotentiallyrevolutionise,theenergymarketandsystemoperations.

Thestudyfoundthat:

•thereisaclearinterestamongenergyanddigitalindustriestoexploitthepo-tentialofblockchain.Pilotsanduse-cas-esarealreadyflourishingallaroundEurope.In-housetestsontechnologicalperformanc-esandscalabilityconfirmedthepotentialfortheseindustriestouseblockchain.However,consumersarenotyetfullyengagedindigitalenergyprojectsandindependentaggregatorsstillfaceentrybarrierstoparticipateinelectricitymarkets.

•Thesustainabilityandtheenergyfoot-printofblockchainisaheavilydebated,butnotalwayswell-analysed,issue.

•Blockchainapplicationsforhigher-levelenergysystemfunctionalities(i.e.appli-cationsrunningonlayersnotdealingwithphysicalpowergridoperations)aremorenumerousandmature.

•Blockchainapplicationslinkedtoenergysys-temoperations(i.e.directlyimpactingphys-icalpowergridsoperations,suchaspowerdispatching)areinsteadlessdeveloped.

NOTES

¹Throughoutthisreport,weusethesub-setterm‘blockchain’insteadofthemorecomprehensiveterm‘DistributedLedgerTechnology’,DLT.Ablockchainisachainofdatablocksseriallyinterconnectedoneaftertheother,whereasDLTincludesotherdataarchitecturesbeyondthechainofblocks,suchasgraphsandothersolutions.WeusethissimplificationbecausemostoftheDLTapplications,alsointheenergysector,arebasedonblockchain.

4

Thisismainlyduetolackofadequateguar-anteesintermsofsafety,certification,andstandardisation.

•Blockchainshowshighpotentialforuseasthedistributeddrivingbrainofanener-gycommunity.Blockchainappearssuitedtosupportthefinancialsettlementofenergytransactions,energytradinginlocalorwidermarkets,energymanagementandflexibilityservicesprovisioning,andseveralcertificationandbillingprocesses.

•Adequateandinteroperablesmartmeter-inginfrastructureisindispensablefortheactivationofblockchainservicesforenergycommunitiesandpeer-to-peerenergytrading.

Recommendationspresentedbycluster

Duringthestudy,itbecameclearthatseveralaspectsandinterfacesmuststillbeclarifiedtosuccessfullygoverntheintroductionofblockchain-basedelectricitydeliveryoptionsandservices.Tothisend,drawinguponthedesktopandexperimentalresearchconducted,thefollowingclustersofrecommendationstoaddressemergingtrendsandissueswereidentified:

Security,privacy&identity

•Requirementstoensurethatblockchainappli-

cationsmaintainadequatecybersecurityand

electricitysupplysecuritylevelsshouldbede-

fined.

•Mechanismstosafeguarddatasecurityandintegrityshouldbefurtherdeveloped.

•Datashouldbeprotected‘bydesign’and

sharedonlyasneededtoactivateconsented

blockchain-enabledservices.

•Effectiveintegrationstrategiesbetweendata

protectionandcybersecurityinitiativesare

needed.

•Theresilienceandsecurityofmoderntele-

communicationnetworksandtheInternet

shouldbeassessed,fromacybersecurityper-

spective,fortheimpactofenergydigitalisa-

tion.

•Cybersecuritycertificationschemesshould

increasinglycoverboththedomainofblock-

chaincoreinfrastructureandthedomainof

enduserapplicationsanddevices(e.g.Inter-

netofThings).

•Strongauthenticationschemesshouldbeem-

beddedinthedesignofblockchainsolutions.

Recommendationsbyclustertowardsblockchaindeploymentforenergytransition

Source:EC

5

Dataaccess,liabilityandmarkets

•Robustenergydatahubs/platforms,withagreedrulesfordataaccessanduse,shouldbedesigned.

•Marketrulesshouldbeadaptedtotakeintoaccounttheemergenceofnew‘automatedagent’actors.

•Decentralisedresponsibilitiesofelectricitysupplyanddeliveryshouldbeclearlydefinedandallocated.

Fairnessandacceptance

•Fairnessshouldbeaguidingprincipleforde-signingmoredecentralisedenergymarketsnotdiscriminatinganyplayer,betheypeopleorbusinesses.

•Consumersshouldbefurtherinvolvedandin-centivisedtoinvestinblockchainprojects.

•Abalanceshouldbefoundbetweenconsumerempowermentandprotection.

Scalabilityandsustainability

•TheEUandnationallegislatorsshouldkeepdevelopingacomprehensivepro-innovationlegalframeworkfordigitalapplications.

•Regulatoryexperimentationsshouldbefur-theradopted.

•Analysesontheenergyfootprintoftheblock-chainsolutionsundertesting/deploymentshouldalwaysaccompanythestudiesonthescalabilityandperformancerequirements.

Interoperabilityandstandards

•TheEUandMemberStatesstakeholdersshouldcontinuetheirinvolvementintheworkofinternationalstandardorganisations.

•Properstandardsandinteroperabilityofblockchain-enableddevices(includingmeters,sensors,andappliances)shouldbepromoted.

NextstepsfortheEUtoexploitblockchainforenergy

TheEUandnationallegislatorsareencouragedtokeepdevelopingacomprehensivepro-innovationlegalframeworkfordigitalapplications,alsobetterregulatingblockchain-enableddigitalassetsandsmartcontracts.

TheECDigitalisationofEnergyActionPlanrepresentsapowerfultoolboxtoimplementactionsforawiderdeploymentofdigital

technologies,includingblockchain,intheenergysector.

WhiletheDigitalTransformationisakeyenablertoreachtheGreenDealobjectives,aconsistentapproachintheregulationofseveralcross-cuttingsectors(energy,transport,financeetc.)isequallyneeded.

Itremainstobeseentowhatextentblockchaincansupportorsubvertbusinessmodelsinthetransitioningelectricitysystemsandmarkets.Indeed,blockchainrepresentsonlyoneoftheenablingtechnologiesofpowersysteminnovation,tobecombinedwithotherdigitaltechnologies,suchasincludingArtificialIntelligence,bigdata,andInternetofThings,toachievetheclimate-neutralityandsustainabilitytargets.

TheJointResearchCentresmartgridsandcybersecuritylaboratoriesstandreadytoscale-uptheirresearchactivitiesinsupportofpolicydecisionmakingandidentifyingcriticalissuesinthedeploymentofblockchainandotheremergingdigitalandenergytechnologies.

Blockchain

technologycanenable,andpotentiallyrevolutionise,theenergymarket

6

CHAPTER1

1.INTRODUCTION

Europe’sfuturewillbestronglyinfluencedbythesuccessfulachievementofthetwindigitalandgreentransitions.IdentifyingandembracingpotentialnewtechnologiescanhelpeveryEuropeancitizentobenefitfromdigitalopportunities.Inaddition,thesetransitionswillincreasetheEU’sresiliencebyreducingdependencyonthirdcountries,influencetheEU’sglobalpositioningontheglobalstage,andhelptheEUtoreachtargetedsustainabilitygoals.

Blockchain(asubsetofdistributedledgertechnologies,seealsofootnote1intheExecutiveSummary)hasbeenidentifiedasbeingpotentiallydisruptivebuthighlyrelevantforboostingthedigitalisationofEuropeansociety.Ononehand,theycouldheraldaneweraofdigitalservices,but,ontheotherhand,theirrobustness,security,scalabilityandsustainabilityarenotyetassured.

Blockchaintechnologyallowsentitiessuchaspeopleandorganisations,butalsomachinesandsoftware,toestablishsecureoperationalagreementsandtransactions.Thepossibilityofeliminatingtheuseofintermediariesbetweenproducersandconsumershasthepotentialtorevolutionisehowdigitalservicesarebuiltanddelivered.

In2018,theIndustry,ResearchandEnergyCommittee(ITRE)oftheEuropeanParliamenttaskedtheEuropeanCommissiontoconductastudyonthepotentialadvantagesanddisadvantagesrelatedtotheuseofblockchaintechnologiesintheenergyfield.

TheJointResearchCentre,theEuropeanCommission’sscienceandknowledgeservice,conductedthestudywhichincludedthedeploymentofblockchain-basedenergydistributiontest-bedsanduse-cases.Theresultsnotonlyconfirmedtheenormouspotentialofthistechnologyfortheenergysector,butalsomagnifiedtheneedforblockchainplatformstobegovernedbymorematureandstandardisedapproaches.Thiswouldenhancesafety,scalabilityandsecurityaspects,whicharekeyfactorswhendealingwithcriticalinfrastructures.

Thisreportisasummaryofthein-depthtwo

yearstudy.Itdoesnotpresentthedetailsof

thescientificexperimentsandresultsobtained,

forwhichtherelatedtechnicalreports[1][2][3]

[24]canbeconsulted.Instead,itoffersahigh-

levelviewofthepossibleuseofblockchain

technologiesintheenergysector,reflectingon

potentialadvantagesandpolicyneeds.

7

CHAPTER2

2.WHATISENERGYDIGITALISATIONANDWHYISITIMPORTANT?

DigitaltransformationiskeytoreachtheEU’sclimate-neutralitytargetsandisalreadyimpactingtheenergysystemdesignandoperation.TheEuropeanUnionrecentlyembracedambitiousoverarchingpoliticalinitiativesinthegreenanddigitalfields,whichhavestrongsynergies:

•TheEuropeanGreenDealistheEU’splanforsustainablegrowth.ItaimstocontributetoachievingtheParisAgreementobjectiveofkeepingtheglobaltemperatureincreasetobelow2°C[4]comparedtopre-industriallev-els.

•TheEUDigitalStrategyaddressescrucialdig-italisationissuesrelatingtoprivacy,security,safetyandethicalstandardsandpromotesthedeploymentofaninfrastructurefitforthefuture[5].

Theseambitionsplansincludenewactstoreinforce/complementdigitalenergy-relevantlegislativeactions–suchastheEnergyUnion/CleanEnergyPackage,theGeneralDataProtectionregulation,theDirectiveonsecurityofnetworkandinformationsystems,andmostrecentlytheDigitalisationofEnergyActionPlan(seealsoFigure1)[4][5][22].

Digitalisationintheenergysectorincludesthecreationanduseofcomputerisedinformationandprocessingofhugeamountsofdata,whichisgeneratedatallstagesoftheenergysupplychain.Therearegreatexpectationsforeverysegmentoftheenergyecosystem:households,prosumers,distribution,transmission,generationandretail,andisoftenstatedaslikelytoleadtoanenergysystemtransformation.

Digitalisationoffersthepotentialtoincreaseenergyefficiencythroughtechnologiesthat

FIGURE1

RecentEUlegislativeinitiativesonenergydigitalisation[6]

Source:EC

8

CHAPTER2

gatherandanalysedatabeforeusingittomakechangestothephysicalenvironment(eitherautomatically,orthroughhumanintervention).Itisfrequentlylinkedwith‘smart’energy,theInternetofThings(IoT)andBlockchaintechnology.Themaingoalofdigitalisationistoimproveefficiencythroughenablingbetter,cheaperandfastermonitoring,recoveryandmaintenanceoftheassetsandcomponentsthrough‘smarter’grids.Forinstance,smarthouseholdswillfacilitateownsolarenergyproduction,theInternetofThings(IoT)willintegratesmartappliancesforsavings,ancillarygridservices,andsmartchargingofElectric

Vehicles.

Thespeedofdigitalisationinenergyisincreasing.Investmentindigitaltechnologiesbyenergycompanieshasgrownsharplyoverthelastyears.Forinstance,accordingtotheInternationalEnergyAgency[16],globalinvestmentindigitalelectricityinfrastructureandsoftwarehasrisenbyover20%annuallysince2014,reachingUSD47billionin2016(Figure2).Thisdigitalinvestmentin2016wasalmost40%higherthaninvestmentingas-firedpowergenerationworldwide(USD34billion)andalmostequaltototalinvestmentinIndia’selectricitysector(USD55billion).

2.1Impactofdigitalisationon

energydemand

Theimpactofdigitalisationontransport,

buildingsandindustryisanundeniablefact.

Theavailabilityofconnectivityeverywhereand

theriseofartificialintelligencetechnologies

aremakingtheTransportsectorsmarter,with

enormousadvantagesinrelationtosafety

andefficiency.Inroadtransport,connectivity

isenablingnewmobilitysharingservices.In

combinationwithadvancementsinvehicle

automationandelectrification,digitalisation

couldresultinconsiderablebutuncertainenergy

andemissionsimpacts.Inthelongterm,under

abest-casescenarioofimprovedefficiency

throughautomationandride-sharing,andwith

apositiveinterplaybetweentechnology,policy

andbehaviour,roadtransportenergyusecould

potentiallydropbyabouthalf[17].Conversely,

ifefficiencyimprovementsdonotmaterialise

andreboundeffectsfromautomationresult

insubstantiallymoretravel,energyusecould

morethandouble.

Inbuildings,digitalisationcoulddecrease

energyusebyabout10%byusingreal-time

FIGURE2

Investmentsindigitalelectricityinfrastructureandsoftware[16]

Source:EC

NOTES

¹Digitalisation&Energy,InternationalEnergyAgency,2018,/reports/digitalisation-and-energy

²Arbib,J.andSeba,T.(2017).RethinkingTransportation2020-2030./transportation.

9

CHAPTER2

datatoimproveoperationalefficiency.Smartenergysystemsandthermostatscananticipatethebehaviourofoccupants(basedonpriorexperience)andusereal-timeweatherforecaststobetterpredictheatingandcoolingneeds[18].Smartlightingcandelivermorethanjustlightwhenandwhereitisneeded;light-emittingdiodescanalsocontainsensorslinkedtoothersystems–forexample,helpingtotailorheatingandcoolingservices.However,itisimportanttobecarefulwithdigitalisation:theproliferationofnewservicesandcomforts(forexample,theuseofstandbypowerbyidledevices)couldoffsetpotentialsavings.

Inindustry,manycompanieshavealonghistoryofusingdigitaltechnologiestoimprovesafetyandincreaseproduction.Furthercost-effectiveenergysavingscanberealisedthroughadvancedprocesscontrols,andbycouplingsmartsensorsanddataanalyticstopredictequipmentfailure[20].

2.2Impactofdigitalisationonpowersupply

Energycompanieshavebeenusingdigitaltechnologiesforyears,helpingtoincreasetherecoveryoffossilresources,improveproductionprocesses,reducecostsandimprovesafety.Anoptimiseduseofdigitaltechnologiescoulddecreaseproductioncostsbetween10%and20%,whilerecoverableoilandgasresourcescouldbeboostedbyaround5%globally,withthegreatestgainsexpectedinshalegas[16].

Inthecoalindustry,digitaltechnologiesarebeingusedonasideingeologicalmodelling,andontheotherinmoreclassical'industrialprocesses'suchasautomationandpredictivemaintenance.

Inthepowersector,digitalisationhasthepotentialtosavearound$80billionperyear,orabout5%oftotalannualpowergenerationcosts[16],basedonthecurrentsystemdesignandenhancedglobaldeploymentofavailabledigitaltechnologiestoallpowerplantsandnetworkinfrastructure.Thiscanbeattainedbydroppingoperationandmaintenancecosts,improvingpowerplantandnetworkefficiency,reducingunplannedoutagesanddowntime,andextendingtheoperationallifetimeofassets[19].

2.3Impactoffulldigitalinterconnectionofenergysystems

Themostimportanttransformationalprospectivefordigitalisationisitsabilitytobreakdowntheboundariesbetweenenergysectors,increasingflexibilityandenablingintegrationacrossentiresystems.Attheheartofthistransformationistheelectricitysector,wheredigitalisationmakesthedistinctionbetweengenerationandconsumptionblurring,enablinganumberofinterrelatedopportunities.

AsreportedbyInternationalEnergyAgency(IEA)[16],smartdemandresponsecouldprovide185GWofsystemflexibility,theequivalentofthecombinedelectricitysupplycapacityofAustraliaandItaly.StillaccordingtotheIEA,“thiscouldsave$270billionofinvestmentsinnewelectricityinfrastructure”.Theimpactispotentiallysohugethatsomestudies[16]estimatethepotentialinvolvementofonebillionhouseholdsand11billionsmartappliancesinanewparadigmofinterconnectedelectricitysystems.

Digitalisationcanfacilitatetheintegrationofintermittingrenewablescontributingtooptimisationandsynchronisationofenergydemandwithweatherforecasts.IntheEuropeanUnionalone,increasedstorageanddigitallyenableddemandresponsecouldreducecurtailmentofsolarPVandwindpowerfrom7%to1.6%in2040,avoiding30milliontonnesofcarbondioxideemissionsin2040[16].

Similarly,thesamedigitalandAItechnologies,ifappliedtothevehiclesmart-chargingdomaincouldprovidefurtherflexibilitytothegridwhilesavingbetween$100billionand$280billioninavoidedinvestmentinnewelectricityinfrastructurebetween2016and2040[16].

Itisclearhow,inthiscontext,newtools

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论