工程土的本构关系讲义讲稿_第1页
工程土的本构关系讲义讲稿_第2页
工程土的本构关系讲义讲稿_第3页
工程土的本构关系讲义讲稿_第4页
工程土的本构关系讲义讲稿_第5页
已阅读5页,还剩91页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AdvancedsoilmechanicsConstitutivelawofsoilMicrostructureofsoilStrengthofsoilConsolidationandrheologySlopestabilityConstitutiveLawofSoilYinZong-ze1.AboutStress-strainRelationship(1)Whatisconstitutivelaw?Stress-strainrelationshipStress-strain-strengthrelationshipStress-strain-timerelationshipStress-strain-temperaturerelationshipstrainstressstrength(2)Conventionalcomputationofstress-strainrelationshipofsoilsSimplestressconditionSettlementofbuilding——onedimensionalproblemConfinedcompressiontest,(oedometertest)pshepaCoefficientofcompressionlinearnonlineareepCompressionindexComplicatedstressstateEarthdam,undergroundstructure,harbor,excavation,etc.ExtensiveHooke’slaw(linearassumption)expandcompress(3)Stress-straintestsConventionaltriaxialtestFirst—cellpressureThen—deviatorstressStraincomponentspistonorganicglassbasecylindricalcellrubbermembranecapthroughwatertoapplythroughpistontoapplyPlanestraintestSampleisenclosedinarubbermembrane,andisputinthecylindricalcell.Cellpressure——Axialstress——Dike,dam,retainingwall,nodeformationinlongitudinaldirection—TruetriaxialtestApplyMeasureHollowedtorsionalsheartestMTakehalfofringasisolatebody----fromMd1d22.DeformationCharacteristicsofSoils(1)Non-linearandnon-elasticmetalsoilPlasticstrain——irrecoverablestrain,duetoadjustmentofpositionofgrains.Oneparticlemayslipoveranotherparticle,maydropintoporespace,andtherelativepositionbetweenthetwoparticlescannotberecovered.Deformationcannotberecovered(2)Plasticvolumetricstrainmetal——noplasticvolumetricstrainsoil—obviousplasticvolumetricstraininducedbyploadingpunloadingMacroscopic—compressMicroscopic——slipbetweengrainsinducedbyShearstressPerformtriaxialtestwithp=constantincrease,butdecreasep=constantp=constantShearcompressionSheardilationp—averagenormalstress,orglobalstressSheardilationDilation———densesand,overconsolidatedclayCompression———loosesand,normalconsolidatedclaySheardilativeShearcompressive(3)PlasticshearstrainExpressionofshearstrainShearstressandstrainonagivenplaneandComplicatestressstateOctahedralshearstressOctahedralnormalstressOctahedralshearstrainExtensiveshearstressExtensiveshearstrainIf,thenenergyofshapedeformationShearstraininducedbyglobalstresspTriaxialtestSimultaneouslyreduce,andkeepconstantq=constant,pdecreases.Mohrcirclegoesleft.WhentheMohrcircletangenttothefailureline,thedeviatorstrainisverylarge.Thedeviatorstrainisinducedbypchange.isduetoexistenceofinitialshearstress.Effectofintersectioninstress-strainmatrix—reflectsheardilation—reflectaveragenormalstressinducingshearstrainElasticmodel—=0=0Plasticmodelcanreflecttheseeffects(4)SofteningandhardeningSofteninghardeningdirectsheartesttriaxialsheartestresiduestrengthresiduestrength(5)influenceofstresspath&stresshistoryStressspace—thespaceconsistsofstresscomponentaxes·MPrincipalstressspacep—qplaneApointinstressspacerepresentsastressstateatapointinsoilbodypqFailurelineqf—pStresspath—thelocusofmovingpointinstressspace.Pointrepresentsstressstate.Stresspathrepresentsthevariationofstressstate,thatistheloadingmannerNMAstresspathconsistsofseveralsections.Eachsectionrepresentsaloadingincrement.thedirectionofthesectionreflectstheproportionofstresscomponents··StresspathinfluencesthestrainstatesignificantlyqpqfACBBC’C’CUn-draineddraineddrainedStresshistory—thestressstateinhistoryorthestresspathinhistoryPlasticstrainisirrecoverable.Thehistoricalstrainwasstoredandaccumulated.Stresshistoryinfluencestrain.Thesamestressstate,differentstraindifferentmodulus(6)InfluenceofmeannormalstressExpressionofvariationofmeannormalstressLodeparameterLodeangleM·plane·MXYOctahedralplaneInstressspaceIngeometryspaceInspaceParameterbStateb11000.5-1-0Influenceofmeannormalstressstrengthb—Triaxialtest,axialsymmetric,b=0,σ2=σ3a—Planestraintest,nostraininσ2direction,b=0.3~0.4,σ2>σ3abbaForthesameσ1andthesameσ3shapeofstress-straincurveb=0b=1.0b=0.5(7)Influenceofconsolidationstress(surroundingstress,confiningpressure)Strength···Largegrainisbrokenintosmallgrains1000.010.11100.001d(mm)p(%)BeforetestAftertestGradationcurveSheardilationInlowconfiningpressure,——sheardilationInhighconfiningpressure,——shearcompressionSoftening&hardeningInlowconfiningpressure,——softeningInhighconfiningpressure,——hardeninglowconfiningpressurehighconfiningpressure(8)AnisotropyvirginanisotropyanisotropyinducedbystresstransverseverticalsedimentationRemoldingsoil———isotropicRemoldingsoilappliedisotropicstresses——isotropicRemoldingsoilappliedanisotropicstresses——anisotropicundisturbedsoilABAB≠≠——unsymmetric——unsymmetricTruetriaxialtest——dilative——compressiveσ3=100kPa,σ2=150kPa

σ3=100kPa,σ2=200kPa

σ3=200kPa,σ2=300kPa

σ3=100kPa,σ2=250kPa

σ3=100kPa,σ2=300kPa

ε2(%)

ε1(%)

ε3(%)

ε1(%)

increaseΔε(%)Δ(σ1-σ3)(kPa)-3.00-2.00-1.000.001.002.0040.0080.00120.00160.00试验邓肯模型各向异性Δε1Δε2

Δε3Δε(%)Δσ2(kPa)200.00-1.000.001.002.000150.00试验邓肯模型Δε1Δε2

Δε3图2增增加σ1的试验结果和和邓肯模型与与各向异性模模型计算结果果图3增增加σ2的试验与邓肯肯模型计算结果果Δσ3(kPa)-0.4-0.20.00.0040.0080.00120.00Δε(%)试验邓肯模型Δε1Δε2

Δε3图4增增加σ3的试验与邓肯肯模型计算结果3.NonlinearelasticmodelExtensiveHooke’’slowSoftnessmatrixHardnessmatrixshearmodulusbulkmodulus,volumetricmodulusNonlinearelasticmodelDeterminationofparametersofHooke’slawUnconfinedcompressiontesttangentmodulussecantmodulusTriaxialtest-ControlstresspathtriaxialtestSolvesimultaneousequationstogetPlanestraintestDeterminationofK&G(2)HyperbolicmodelTangentYoung’smodulus················ab—theultimatedeviatorstressasymptoteofthecurve—deviatorstressatfailurecLetThen····n——atmosphericpressureS—stresslevel,reflectingmobilizedextentofstrengthTangentPoisson’sratio········AsymptoticvalueofInterpolatebetweenandlinearlywithstresslevelS····BulkmodulusK(B))=constant·····hyperbola~~Unloading&reloadingmodulusloadingreloadingunloading···CriterionofunloadingIntestsample,decreaseofInrealsoilmass,complicateUnloadingofconfiningstressUnconfinedcompression——maxinhistoryparameters——effectivestrengthparametersK——initialtangentmoduluswhen50~2000Kur———initialtangentmoduluswhen(1.2~~3.0))Kn——index,whichreflectsvariationofEiwith0~1.0Rf———failureratio0.5~0.95lessKn-smallerRfn-greaterF——parameterwhichreflectsvariationofwithG——initialtangentPoisson’sratiowhenD——inverseofasymptoteofofhyperboliccurve~0.2~0.60.0~0.250.0~20.0GDFDiscussionSuitability。Constantconfinedstress=constant。Straininducedonlybydeviatorstress。StraininducedonlybydeviatorstressMerits。beingabletoreflectmaindeformationcharacteristics:nonlinear,stresshistory,stresspath。simple,andeasytobeexceptedbyengineers。easytodetermineparameters,andengineershaveexperiencesforparametersShortcomings。cannotreflectsheardilation,softness,andanisotropy。hasnotgivetheparametersforconfinedstressreduction4.Elasto-plasticmodel——recoverablestrain,elastic——irrecoverablestrain,plasticPlasticstrain。failurecriterion,yieldcriterion。hardeninglaw。flueruleFailurecriterionelasticfailureFailuresurface——locusofthepointsinstressspacewhicharrivefailure(1)failurecriterion——failurefunctionvariablesarestresscomponentsTrascacriterionHexagonalcolumnSaturatedsoil,undrainedMisescriterionCircularcolumnsurfaceExtensiveMisescriterionDrucker-PragerGeotecnicalmaterial——firststressinvariant——seconddeviatorstressinvariantCircularconesurfaceCambridgeuniversityMohr-CoulombcriterionHexagonalconewithequaledgesbutunequalanglesMisesMohr-CoulunbTrascaLade-Duncancriterion(2)yieldcriterionsimplestresselasticplastic,yieldcomplicatestresselasticplastic,yieldtheoreticalmaterial,yield=failuregeotechnicalmaterial,yieldfailureConceptofyield—yieldfunction,correspondingtoyieldsurfaceinstressspaceyieldsurface—locusofthepointsinstressspacewhichreachyieldifkchanges,yieldsurfacemovesYieldsurfaceVariationofyieldsurfaceLoadingandunloadingCurrentstressstate—onyieldsurface,Anewstressincrementisapplied.*unloading*loading*neutralloadinglimitofelasticplasticelastic2vectorsmultiplyYieldsurfaceforgeo-materialIndependentoncoordinatesConetypeCaptype2yieldsurfacekincreases—hardeningkdecreases—softeningkconstant—theoretical(3)hardeninglawAfteryield,kchanges,H—hardeningparameter,aphysicalvariantwhichcourseskchangeForagivenvalueofH,yieldsurfaceisdefined.Howdoeskchange?Whichfactorcauseskchange?(4)flueruleHowtheplasticstraindevelopsamongthestraincomponents?Howtodeterminetheproportionofthestraincomponents?—plasticstrainincrementDirectionofdetermineseachcomponentoftheplasticstrainincrement.FluerulegivesdirectionofConceiveaplasticpotentialfunctionStrainspaceisoverlappedwithstressspace.PlasticstrainincrementisperpendiculartoplasticpotentialsurfaceAssociatedflueruleDrucker’spostulation—anelementexitsinitialstressstate,loadingslowly,andthenunloading,duringloading,workdonebyexternalagencyispositive.Andduringloadingandunloading,workdonebyexternalagencyisnotnegative.··Ifonyieldsurface,··derivation*Allthepointswhichrepresentthestressmustbeontheothersideoftheplaneperpendiculartoyieldsurfacefmustbeconvex.····ifconcave*isperpendiculartoyieldsurfacef··ifnot,Non-associatedfluerule·softening(5)Elasto-plasticMatrixElasticPlastic(a)(b)(c)softnessmatrix:(6)Cambridgemodel--1.StateboundarysurfaceAnexampleofElasto-plasticmodelDrainedsheartestUndrainedshearteste~effectivestressp&qarethesameforbothdrainedandundrainedtests.q=0q=MpVirgincompressioncurvefailurecurve31,onyieldsurfaceNB,onstateboundarysurface(1)——q—reduce,p—constant,e—constant.ND—verticalline(2)——,onlypreducesBD,unloadingcurveongroundLineNBprojecttoq—pplane,yieldlocus;projecttoe—pplane,unloadingcurve.NB,intersectionlineofverticalcolumnsurfaceBDNandhorizontalsurfaceNN´B´BStateboundarysurfaceisthelocusofmovingcurveNB.VerticalcolumnsurfaceBDNiscalled‘elasticwall’.Onlyelasticdeformationinthewall.Gooverthetopofthewall—plasticdeformation.2.Mathexpressionofstateboundarysurface⑴N’B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论