电子输运理论及性质课件_第1页
电子输运理论及性质课件_第2页
电子输运理论及性质课件_第3页
电子输运理论及性质课件_第4页
电子输运理论及性质课件_第5页
已阅读5页,还剩86页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

固体物理(II)第八章电子输运理论及性质第九章半导体电子论第十章固体的磁性第十一章超导电性第八章电子输运理论及性质能带结构输运性质载流子受到的散射或碰撞三个问题外场下作用下载流子的运动规律外场和碰撞同时作用对载流子输运性质的影响引入驰豫时间描述采用半经典模型引入分布函数,并将这些影响归结到对分布函数的影响8.1外场下Bloch电子运动的半经典模型8.2Boltzmann方程8.3外场和碰撞作用8.4驰豫时间的统计理论8.5电-声子相互作用8.6金属电导率电阻率8.8磁输运性质霍尔效应磁电阻效应8.9热输运性质热电效应热导率热电势Bloch电子的运动方程对晶格周期场的量子力学处理全部概括在函数中能带结构输运性质半经典模型使能带结构与输运性质即电子对外场的响应相联系输运性质能带结构同基于理论得到的能带结构进行比较从而验证能带结构的理论基础的正确与否提供了从能带结构推断出电子输运性质的理论基础基于输运性质的测量结果推断出电子的能带结构§8.2Boltzmann方程对固体中电子输运性质的了解,除载流子受到的散射或碰撞外,需要知道外场作用下载流子的运动规律以及外场和碰撞同时作用对载流子输运性质的影响。外场下载流子运动规律可基于半经典模型现在要解决的是如何考虑碰撞以及碰撞和外场同时作用对载流子运动规律的影响?引入分布函数,并将这些影响归结到对分布函数的影响定义对于单位体积样品,t时刻、第n个能带中,在(r,k)处相空间体积内的电子数为:每一个电子对电流密度的贡献为n通常不标出,因为考虑的是同一带中的电子所以总电流密度为碰撞以及碰撞和外场同时作用对f的影响?在热平衡情况下,即温度均匀且没有外场作用,电子系统的分布函数为费米分布函数与位置无关。有外场/温度不均匀时,电子将偏离热平衡,相应的分布函数点范围内如何随时间变化呢?玻尔兹曼方程右边第一项展开,保留到dt的线性项,有对于稳态Boltzmann方程决定于体系的能带结构与外场有关因此,Boltzmann方程将能带结构、外场作用以及碰撞作用通过引入分布函数而相联系,成为研究固体电子输运性质的理论基础半经典模型§8.3外场和碰撞作用(1)温度场温度梯度的存在引起不均匀的分布函数通常假定非平衡的稳态分布相对于平衡分布偏离甚少(2)电场忽略掉温度梯度对f1的影响玻尔兹曼方程最复杂的是碰撞项的处理,为了方便,可以做一些简化。假设没有外场,也没有温度梯度,那么如果电子的分布函数偏离了平衡值,系统必须以碰撞机制来恢复平衡态的分布。(4)碰撞负号源于偏离随时间的增加而减小。方程的解:该方程说明:由于碰撞作用,系统将以时间常数弛豫回到平衡分布。一般可以用弛豫时间来描述这个恢复过程:温度场、电场、磁场及碰撞作用同时存在下的Boltzmann方程温度场电场磁场碰撞(4)碰撞(1)温度场(2)电场(3)磁场得到代入§8.4固体电阻率在没有温度场、磁场的情况下,仅有电场时的Boltzmann方程为泰勒定理:因此,该式相当于上述泰勒展开式的一级近似借助分布函数电流密度可表示为由于平衡分布对电流没有贡献相当于同时注意到§8.4.1直流电导率知道了分布函数就可以很方便的求出电流密度,只需对分布函数在相空间求积分:代入两个等能面之间的距离为dk面元为ds体积元为由于:而:考虑K空间的两个等能面由于只在费米面附近才不为零,即所以积分只需考虑在费米面附近进行考虑一个立方体晶体,外场方向沿着Ox方向,电流沿着Ox所以立方体晶体的电导率在多种散射机制存在下,总的散射几率是:总散射驰豫时间电阻率源于传导电子的散射,固体因缺陷、杂质、晶格振动、库仑作用等,往往存在着多种散射机制Pi代表第i种机制单位时间内的散射几率意味着总电阻率是不同散射机制引起的电阻率之和马西森(Matthiessen)定则剩余电阻率声子散射有关的电阻率电子-电子相互作用有关的电阻率磁散射有关的电阻率导体杂质、缺陷等散射电子-声子相互作用电子-电子相互作用磁散射导体电阻率至少包含四个部分§8.4.2导体电阻率常见的散射机制导体中或多或少存在缺陷或结构不完整或含有杂质离子,这些缺陷、结构不完整性和杂质将对传导电子产生散射,引起电阻。与此相对应的电阻率称为剩余电阻率,记为0起因剩余电阻率与样品质量有关,是一个与温度无关的常数。通过低温下电阻率随温度关系的测量并外推到绝对零度,即可得到剩余电阻率。很明显,样品质量越好,也就是说,尽可能少的缺陷、结构尽可能完整、没有杂质的存在,0则越小。如果是理想导体,则剩余电阻率趋向于零。1、剩余电阻率非磁金属电阻率费米面附近电子散射的驰豫时间散射矩阵元的绝对值。费米面能态密度。明显地,式中的物理量均与电子自旋是无关的因此,在非磁性金属中,电子的输运与电子的自旋无关电子的自旋-自旋散射铁磁金属Stoner提出了能带劈裂交换模型对于铁磁过渡金属来说,交换作用能与动能的平衡使系统不同自旋的子带发生交换劈裂,自旋向上的子带与自旋向下的子带发生相对位移,引起自发磁化,这样一来系统的动能虽然增加了,但由于其3d电子在费密面附近具有非常大的态密度,动能的增加不大,而交换作用能却大大减小,因而系统的总能量有所下降。交换劈裂使自旋向上的子带(多数自旋)全部或绝大部分被电子占据,而自旋向下的子带(少数自旋)仅部分被电子占据。二者的差异造成了铁磁过渡金属元素原子磁矩的非整数性.两子带的占据电子总数之差正比于它的磁矩。金属中掺有少量磁性杂质,实验发现,电阻率随温度降低而变小,在某一温度附近达到最小,然后随温度进一步降低而增加实验现象这些反常现象实验上早已观察,多年来一直是金属研究中的一个疑难问题,直到1964年,近藤(J.Kondo)提出理论对电阻极小现象以解释。磁性杂质对传导电子的散射实验现象金属中掺入少量磁性杂质引起低温下出现电阻极小的现象,以及与此相关的一系列低温反常现象,称为近藤效应。近藤效应而声子散射有关的电阻率随T降低而减少传导电子本身携带自旋磁性杂质具有局域磁矩杂质磁矩与传导电子自旋之间存在相互作用这一作用引起对传导电子额外的散射,导致额外的电阻率:近藤理论ni-杂质浓度,J-交换积分,D-导带半宽度两者的竞争必然在某一温度达到极小实验现象1)电子-电子相互吸引作用的简单模型1950年弗烈里希(Frolich)指出:电子-声子相互作用能把两个电子耦合在一起,这种耦合就好像两个电子之间有相互作用一样为了明确其物理图像,弗烈里希给出如下一个物理模型整齐排列的理想点阵中的两个电子当第一个电子通过晶格时,电子与离子点阵的库仑作用使晶格畸变当第二个电子通过畸变的晶格时,受到畸变场作用,畸变场吸引这第二个电子如果我们忘记第一个电子对晶格造成畸变的过程,而只看最后结果,将是第一个电子吸引第二个电子3、声子散射有关的电阻率当温度不为零时,离子实会在平衡位置附近发生小的振动,使得电子势变成

晶体中共有化运动的电子是在和晶格具有相同周期的势场中运动:对理想完整的晶体,绝对零度时离子实处在严格周期排列的位置在这样的周期场中运动的电子,其状态是由确定能量和确定波矢的Bloch波所描述的稳定态,这种稳定态不会发生变化。明显地,周期势场因晶格振动而被破坏,附加的偏离周期性势场离子实对平衡位置的偏离

2)电-声子相互作用的理论描述可看作为微扰,它使得电子从一个稳定态跃迁到另一稳定态,即出现散射

假设偏离很小,则有

为简单起见,只考虑简单格子,此时仅有声学支

将波矢q、频率的简正模引起的原子位移写成实数形式

为振动方向上的单位矢量

这是量子力学中典型的含时周期性微扰问题在这样的微扰下,电子从k态跃迁到k’态的几率为函数保证了跃迁过程中能量是守恒的,即离子实偏离平衡位置的运动组成晶体中的格波,格波的能量是量子化的。格波的量子称为声子

因此晶格振动对电子的散射实际上就是声子对电子的散射。晶格运动对电子的散射过程相当于电子通过吸收(+)或发射声子(-),从一个稳定态跃迁到另一稳定态的过程。量子力学语言吸收声子发射声子散射矩阵元由于晶格平移对称性,求和部分仅仅当波矢之和为倒格矢方不为零,由此给出晶格动量守恒关系,即能量守恒关系动量守恒关系正常过程或N过程此时说明电子在初态k吸收(+)或发射(-)一个波矢为q的声子跃迁到末态k‘的过程能量和动量均是守恒的。吸收声子发射声子倒逆过程或U过程此时说明电子在初态k吸收(+)或发射(-)一个波矢为q的声子跃迁到末态k‘的过程能量是守恒的,但动量并不守恒。§7.4.3驰豫时间碰撞项该方程说明:由于碰撞作用,系统将以时间常数弛豫回到平衡分布。另外一方面,碰撞项也可以表示为:代表单位时间内因碰撞进入(r,k)处相空间单位体积中的电子数代表单位时间内因碰撞离开(r,k)处相空间单位体积中的电子数若电子从k态跃迁到k’态的几率为wk,k’,计及泡利不相容原理,则有同理有因此可以论证则有在外加电场下对球形费米面如取电场方向为k方向,则有为k和k’之间的夹角写成积分形式3)声子散射有关的电阻率故电阻率不仅与跃迁几率有关,还涉及(1-cos)的权重因子很明显小角度的散射对产生电阻几乎没有贡献,起重要作用的则是大角度散射,它使电子沿电场方向的速度有大的改变。由前面得分析看到,电子和格波的一个简正模(即一个声子)相互作用导致电子从k态到k’态的跃迁,其跃迁几率正比于该格波振幅的平方对所描述的格波模晶格中每个原子的振动动能对时间平均后得到N个原子总的振动动能为可见,振幅的平方与相应格波模的能量相联系,用声子语言,则是比例于相应的声子数频率为的格波的声子数按德拜模型,总的声子数为高温低温同时,高温下涉及的声子波矢较大,(1-cos)与温度几乎无关,因此,电阻率正比于温度,即另外一方面,低温下涉及的声子波矢小,需要考虑(1-cos)因子的影响布洛赫-格林艾森T5定律更一般情况下电子受声子的散射引起的电阻率为:A为材料有关的常数,M原子质量,D为德拜温度高温低温意味着高温时,因电-声子相互作用引起的电阻率随温度降低而线性减小意味着低温时,因电-声子相互作用引起的电阻率按T5关系随温度降低而减少称为布洛赫-格林艾森公式4、电子-电子相互作用有关的电阻率金属中的传导电子虽拥在一起,彼此仅相距~0.2nm,但在两次相互碰撞之间却运动了相当长的距离。电子-电子碰撞的平均自由程室温下>103nm,1K下>10cm这是金属的一个令人惊异的性质!为什么?注意到:正是因为如此长的平均自由程,才使得自由电子模型在很多方面给金属性质以令人满意的描述两个原因泡利不相容原理降低了电子的碰撞几率两电子之间库仑相互作用的屏蔽以二体碰撞为例来说明不相容原理是如何降低电子的碰撞几率的波矢为k1的电子与波矢为k2的电子碰撞根据泡利不相容原理,只允许这样的碰撞发生,即其终态k3和k4在碰撞以前是未被电子占据的态。碰撞后波矢分别变成k3和k4考虑二体碰撞发生在激发轨道1中的一个电子与费米海里填满的轨道2中的一个电子之间1243为方便起见,将费米能级取为能量零点这样,电子1的能量E1为正,电子2的能量E2为负。根据不相容原理,碰撞后电子的轨道3和4必定在费米球外,相应的能量E3和E4均为正值。1243能量守恒意味着只有当轨道2处在费米面以下厚度为E1的能壳中时碰撞过程才可能发生因此,处在充满轨道中的电子,仅仅部分电子才可能成为电子1的碰撞靶体,这部分作为靶体的电子占总数的比例约为动量守恒即使处在上述能壳中的电子可作为电子1的碰撞靶体,但碰撞过程还要求满足动量守恒,因此,处在上述能壳中的电子也只有部分参与了和电子1的碰撞,这部分电子所占的比例近似为因此,泡利不相容原理使得电子-电子碰撞几率相对于经典值降低了一个因子用热能kBT代替E1,则降低因子可近似为能量守恒动量守恒在卢瑟福碰撞截面计算中,电子被看成是一个未屏蔽的点电荷,相应的库仑势为:然而,电子的运动是关联的,关联的后果是使得点电荷产生的库仑势受到屏蔽,成为屏蔽库仑势

两电子之间库仑相互作用的屏蔽泡利因子的出现强调了电子-电子相互作用的重要性,而屏蔽效应引起碰撞截面的减小因而降低了电子-电子相互作用的重要性因此,考虑电子-电子相互作用后,有效碰撞截面近似为泡利因子屏蔽库仑相互作用下的碰撞截面屏蔽效应在电子-电子碰撞过程中所起的作用是降低碰撞截面Q0,使之小于未屏蔽库仑势的卢瑟福碰撞方程所估计的碰撞截面由于电子-电子相互作用,使得有效碰撞截面正比于温度的平方,因此,电子-电子相互作用有关的电阻率为1、基本概念极化场:离子晶体中的导电电子在移动时将使周围晶格极化,正离子被吸向电子,负离子被电子排斥。这种正、负离子的相对位移,形成一个围绕电子的极化场。

极化子:离子晶体中,导电电子与它周围的极化场所构成的一个互相作用的整体,称为极化子。从场论角度看,极化子是慢运动电子与光学模纵声子(LO声子)相互作用系统的准粒子。大极化子与小极化子:极化子的尺寸由电子(或空穴)周围晶格畸变区域的大小决定。当这个区域比晶格常数大得多时称为大极化子。当电子周围的晶格畸变区小于或等于晶格常数量级时称为小极化子。§8.4.3极化子(polarons)

有关的电阻率极化子的尺寸:极化场中的晶格畸变可以解释为电子在其周围激发LO虚声子。因此,极化子的尺寸可以由电子发射或吸收LO虚声子后的位置不确定度估计。式中Δk,m,ωL依次是电子发射或吸收LO虚声子后的波数不确定度、电子的有效质量、声子的圆频率。对极性离子晶体半导体,如Ⅱ—VI和Ⅲ—V族化合物,能带电子的有效质量比自由电子质量小一百倍,极化子的尺寸约为100Å,远大于晶格常数,这些材料中的载流子是大极化子。对于多数离子晶体,如碱金属的卤化物,其能带电子的有效质量可近似取自由电子质量,这样算出的极化子尺寸略大于晶格常数,载流子近似为小极化子。以离子晶体为例说明一个极化子的形成过程对于窄带半导体,如NiO,能带电子的有效质量较大,Δr小于或等于晶格常数,属于小极化子情形。一般来说,小极化子出现在具有窄带和强耦合的系统中。

2、极化子形成过程KCl形成弹性点阵

由于K离子带正电,如果传导电子出现在K离子附近意味着,在弹性点阵情况下,K或Cl离子会因为同传导电子之间的库仑力作用而发生位移,即所谓的晶格应变同样由于Cl离子带负电,当传导电子经过时,传导电子和Cl离子之间的库仑排斥力作用使得Cl离子远离传导电子弹性点阵则传导电子和K离子之间的库仑吸引力作用,使得K离子向传导电子靠近电子加上与之联系的应变场称为一个极化子离子的位移增大了电子的有效惯性,因此也就增大了它的有效质量,从而使得传导电子的运动速度变缓。在极端情况下,传导电子自陷于应变场中,或者说传导电子被因晶格畸变而产生的应变场所捕获,成为束缚态电子。现在所关心的是,电子如何从一个束缚态过渡到另一个束缚态极化子有关的电阻率高温下,传导电子借助于热激活机理可以从一个束缚态过渡到另一个束缚态高温无外场时势能曲线传导电子越过势垒向左和向右的几率势一样的传导电子右端势垒高度由原来的E0下降至而传导左端势垒高度增至外场的作用使势垒不再对称因此,传导越过势垒向右的净几率为而电阻率在弱场或高温下低温低温下传导电子借助隧穿机理而缓慢地通过晶体

三十年多前,基于极化子隧穿机理提出极化子输运理论按照该理论,低温(kT<2tp)下电阻率I.G.LangandYu.AFirsov,Sov.Phys.JEPT16,1301(1963)其中tP是极化子跳跃积分,a为晶格常数,为驰豫率光学声子模的平均频率,A为常数,取决于裸带宽和电-声子耦合强度

低温下只有低频模式才对电阻率有贡献,而高频模式可忽略不考虑,因此,

其中s为软光学模式的平均频率,C为正比于极化子有效质量的常数

§8.5磁场中电子的运动磁场中电子运动的基本方程1、自由电子的准经典运动

自由电子的能量回转频率可见k空间电子在面上做圆周运动实空间电子的运动对时间求导可见在(x,y)平面做匀速圆周运动回转频率2、自由电子情况的量子理论

无磁场时自由电子哈密顿算符为整数N个电子基态从能量最低k=0态开始,按能量由低到高依次填充,最后得到一个费米球。电子的本征能量磁场中电子的动量包含两部分运动动量势动量(场动量)因此磁场中电子的哈密顿算符外加磁场,假设磁场沿z轴,则可取矢势因此,磁场中运动的电子满足的薛定鄂方程为令代入得到应满足的方程令显然,这是简谐振子的薛定鄂方程谐振子波函数谐振子的能量而电子波函数电子的能量电子波函数电子的能量这些量子化的能级称为朗道能级表明:沿磁场方向(z方向)电子保持自由运动,相应的动能为在垂直磁场的(x,y)平面上,电子运动是量子化的,从准连续的能量变成在垂直于磁场方向上,无磁场时的动能按量子化,简并到Landua能级上这样在k空间中,许可态的代表点将简并到Landua管上,其截面为Landau环,如图。3、晶体中电子的情况

晶体中电子在磁场中的运动时,其哈密顿算符处理思路:将周期性势场的影响概括为有效质量的变化——有效质量近似方法哈密顿量采用有效质量近似后,晶体中的电子可视为“自由电子”,正是此电子的质量是有效质量m*回转频率磁场下晶体中电子的波函数能量本征值在垂直于磁场方向上,无磁场时的动能按量子化,简并到Landua能级上4、回旋共振晶体中电子在磁场中运动,采用有效质量近似后,电子做螺旋运动,回转频率在垂直于磁场的方向施加一个交变电场,当电子将吸收交变电场的能量电子发生共振吸收,称为回旋共振电子吸收电场的能量,电子实现了从一个朗道能级跃迁到更高能量的朗道能级上,通过测量回旋共振频率,可以确定电子的有效质量半导体材料中能带底和能带顶附近,电子的有效质量不同,具有不同的回旋共振频率§8.6磁输运性质§7.6.1Boltzmann方程及解一般情况下Boltzmann方程若没有温度梯度,只有磁场和电场作用,则代入到类似于在电场下的讨论,我们得到电场和磁场同时存在时的电流密度为若写成形式则有§8.6.2Hall电阻与欧姆电阻假定磁场沿z轴,电流在垂直于z轴的平面上,如图。Hall电阻率与磁场无关!正比于磁场§8.6.3磁电阻效应定义磁场引起的电阻变化,称之为磁电阻效应从推导中看到,与磁场无关的量,意味着之所以得出磁电阻为零的结论,主要是因为:费米面为球形对电流贡献的电子来自于同一能带中只有费米面附近、速度等于费米速度的电子才参与导电,它们感受到同样的洛伦玆力,虽然这种洛伦玆力作用下电子轨道会发生偏转,但恰好为霍尔场的作用所抵消,结果相当于磁场并不存在。费米面并非严格球形实际情况是所有的金属均表现出不为零的磁电阻效应原因参与导电的电子并非仅仅来自单一能带因此电子速度、有效质量与方向和能量有关,仅部分电子的运动满足洛伦玆力与霍尔场力的平衡,其余电子的轨迹发生了变化。假设参与导电的电子来自两个各向同性的能带两带模型这样就有两组不同有效质量和不同速度的载流子总电流Ji、i和Di分别为第i带的电流密度、电导率和D矢量由于这一原因,磁电阻测量常常成为研究费米面形状的最有效实验手段画出矢量图由此解出考虑磁场沿z轴电场在xy平面令Jy=0,则从第二式可得到Hall电场Ey将Ey代入第一式则得到Jx与Ex的关系:磁场下的电导率则有任意场强时公式很复杂,现在考虑低磁场情况。所谓低场是相对而言的,即满足:

磁电导

低场下

磁电阻

所以在两带模型下我们得到磁电阻为讨论在两带模型中,参与对输运贡献的电子来源于两个不同的各向同性的能带,在这种情况下,我们得到意味着磁场引起电阻的增大,其起因是由于洛伦玆力的存在引起电子的运动轨迹发生了变化为了和通常讲到的与自旋有关的磁电阻效应进行区别,通常称洛伦玆力有关的磁电阻效应为正常磁电阻效应。由于由于MR仅为的函数,而由科勒定则看到,相同的磁场下,零场下电阻率越小,则磁电阻越明显,而金属电阻随温度降低而变小,因此,研究这一磁电阻行为的实验最好是在低温下进行。而因此MR仅仅是的函数,即Kohler’sruleF函数的行为仅依赖于材料的本性§8.7热输运性质§8.7.1热电效应一般情况下Boltzmann方程若不加磁场该项不考虑温度梯度引起分布不均匀现在考虑除电场外还存在温度梯度的情况然后我们很容易得到与温度梯度有关的部分,即上述方程中的第一项为上述方程第二项可写为将上面提到的两部

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论