零极点对系统的性能影响分析报告_第1页
零极点对系统的性能影响分析报告_第2页
零极点对系统的性能影响分析报告_第3页
零极点对系统的性能影响分析报告_第4页
零极点对系统的性能影响分析报告_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.专业整理.零极点对系统性能的影响分析任务步骤分析原开环传递函数G0(s)的性能,绘制系统的阶跃响应曲线得到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间);在G0(s)上增加零点,使开环传递函数为G1(s),绘制系统的根轨迹,分析系统的稳定性;取不同的开环传递函数G1(s)零点的值,绘制系统的阶跃响应曲线得到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间);综合数据,分析零点对系统性能的影响在G0(s)上增加极点,使开环传递函数为G2(s),绘制系统的根轨迹,分析系统的稳定性;取不同的开环传递函数G2(s)极点的值,绘制系统的阶跃响应曲线得到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间);综合数据,分析极点对系统性能的影响。增加一对离原点近的偶极子和一对距离原点远的偶极子来验证偶极子对消的规律。.学习帮手..专业整理.2原开环传递函数 G0(s)的性能分析2.1G0(s)的根轨迹取原开环传递函数为:Matlab指令:num=[1];den=[1,0.8,0.15];rlocus(num,den);得到图形:图1原函数G0(s)的根轨迹根据原函数的根轨迹可得 :系统的两个极点分别是 -.5和-.3,分离点为-0.4,零点在无限远处,系统是稳定的。2.2G0(s)的阶跃响应Matlab指令:G=zpk([],[-0.3,-0.5],[1])sys=feedback(G,1)step(sys)得到图形:.学习帮手..专业整理.图2原函数的阶跃响应曲线由阶跃响应曲线分析系统暂态性能 :曲线最大峰值为1.12,稳态值为0.87,上升时间tr=1.97s超调时间tp=3.15s调节时间ts=9.95s, 2超调量 p%=28.3%.学习帮手..专业整理.增加零点后的开环传递函数G1(s)的性能分析为了分析开环传递函数的零点对系统性能的影响,现在在原开环传递函数的表达式上单独增加一个零点S=-a,并改变a值大小,即离虚轴的距离,分析比较系统性能的变化。所以增加零点后的开环传递函数为:开环传递函数表达式:3.1G1(s)的根轨迹因为后面利用阶跃响应来分析时将取的零点均在实轴的负半轴,那么只要了解其中一个开环传递函数稳定,那么其它的稳定也可以推知。所以取a=1画出根轨迹来观察系统的稳定性。当a=1时,开环传递函数的表达式为 :Matlab指令:num=[1,1];den=[1,0.8,0.15];rlocus(num,den)得到图.学习帮手. G.专业整理.图3G1(s)的根轨迹曲线根据G1(s)的根轨迹可得:根轨迹均在左半平面 ,只是多了一个零点,系统仍然是稳定的,并且可以推知,只要零点在实轴的负半轴上 ,系统都是稳定的。3.2增加不同零点时 G1(s)的阶跃响应当a=0.01的阶跃响应当a=0.01时,对应的闭环传递函数为Matlab指令:num=[100,1];den=[1,100.8,1.15];step(num,den)gridon得到图图41(s)的阶跃响应曲线(由阶跃响应曲线分析系统暂态性能:.学习帮手..专业整理.曲线最大峰值为0.992,稳态值为0.87,上升时间tr=0.0434s超调时间tp=0.139s调节时间ts=197s, 2超调量 p%=11.4%当a=0.1的阶跃响应当a=0.1时,对应的闭环传递函数为Matlab指令:num=[10,1];den=[1,10.8,1.15];step(num,den)gridon得到图图52(s)的阶跃响应曲线(由阶跃响应曲线分析系统暂态性能:由图可知,曲线最大峰值为0.931,稳态值为0.87,上升时间tr=0.256s.学习帮手..专业整理.超调时间tp=0.685s调节时间ts=12.4s, 2超调量 p%=7.02%当a=1的阶跃响应当a=1时,对应的闭环传递函数为Matlab指令num=[1,1];den=[1,1.8,1.15];step(num,den)gridon得到图图63(s)的阶跃响应曲线(由阶跃响应曲线分析系统暂态性能:由图可知,曲线最大峰值为0.905,稳态值为0.87,上升时间tr=2.04s超调时间tp=2.97s调节时间ts=4.43s,2.学习帮手..专业整理.超调量 p%=4.03%当a=10的阶跃响应当a=10时,对应的闭环传递函数为Matlab指令num=[0.1,1];den=[1,0.9,1.15];step(num,den)gridon得到图图74(s)的阶跃响应曲线(由阶跃响应曲线分析系统暂态性能:由图可知,曲线最大峰值为1.07,稳态值为0.87,上升时间tr=1.98s超调时间tp=3.15s调节时间ts=7.73s, 2%当a=100的阶跃响应.学习帮手..专业整理.当a=10时,对应的闭环传递函数为Matlab指令num=[0.01,1];den=[1,0.81,1.15];step(num,den)gridon得到图图85(s)的阶跃响应曲线由阶跃响应曲线分析系统暂态性能:由图可知,曲线最大峰值为1.11,稳态值为0.87,上升时间tr=1.96s超调时间tp=3.11s调节时间ts=9.84s,2超调量p%=27.7%3.3增加零点后对系统性能的影响分析(根据图2,图4,图5,图6,图7,图8,可以得到原函数以及在原开环传递函数上增加一个零点s=a,a分别取0.01,0.1,1,10,100的系统性能参数。如以.学习帮手..专业整理.下表1所示:alga曲线峰值上升时间超调时间调节时间超调量(s)(s)(s)(%)原传递函数负无穷1.121.973.159.9528.30.01-20.9920.04340.13919711.40.1-10.9310.2560.68512.47.02100.9052.042.974.434.031011.071.983.157.7323.510021.111.963.119.8427.7表1根据表1可画出lga与各个指标的关系曲线,如以下图9,图10,图11,图12和图13。因为原函数中的lga的值为负无穷,所以无法在图中直接反映,所以图9,图10,图11,图12和图13五个图反映的是,零点距离原点的远近对系统性能的影响。曲线峰值1.210.8值峰0.6线曲0.40.20-3 -2 -1 0 1 2 3lg(a)图9曲线峰值 Mr与lg(a)的关系.学习帮手..专业整理.上升时间2.52间1.5时升1上0.50-3-2-10123lg(a)间时调超-3间时节调-3

图10上升时间 tr与lg(a)的关系超调时间3.532.521.510.50-2 -1 0 1 2 3lg(a)图11超调时间与 lg(a)的关系调节时间250200150100500-2 -1 0 1 2 3-50lg(a).学习帮手..专业整理.图12调节时间与 lg(a)的关系超调量302520量调 15超1050-3 -2 -1 0 1 2 3lg(a)图13超调量与lg(a)的关系结论:1.增加不同的零点对系统参数有不同的影响 ;2.曲线峰值与超调量受到影响后的值与原值没有重合 ,上升时间,超调时间与调节时间与原值有重合 ;3.随着a的增加(或者说随着零点渐渐远离零点),曲线峰值受到的影响(取绝对值来看)和超调量受到的影响均是先增后减;上升时间受到的影响,超调时间受到的影响,调节时间受到的影响均是先减后增再减;4.当a=100时,也就是零点距离原点最远时,增加的零点对系统的影响最小,可以预见,当零点与原点的距离趋近于无穷远时,系统性能受到的影响趋近于0。.学习帮手..专业整理.增加极点后的开环传递函数G2(s)的性能分析为了分析开环传递函数的极点对系统性能的影响 ,现在在原开环传递函数的表达式上单独增加一个极点 S=-p,并改变p值大小,即离原点的距离,分析比较系统性能的变化。所以增加零点后的开环传递函数为 :4.1G2(s)的根轨迹因为后面利用阶跃响应来分析时将取的极点均在实轴的负半轴,那么只要了解其中一个开环传递函数稳定,那么其它的稳定也可以推知。所以取p=1画出根轨迹来观察系统的稳定性。当p=1时,开环传递函数G2(s)的表达式为Matlab指令:num=[1];den=[1,1.8,0.95,0.15];rlocus(num,den);h=findobj(gcf,'Type','line');set(h,'LineWidth',3);得到图: G.学习帮手..专业整理.图14原函数G0(s)的根轨迹根据G(s)的根轨迹可得:根轨迹均在左半平面 ,只是多了一个极点,系统仍然是稳定的 ,并且可以推知,只要极点在实轴的负半轴上 ,系统都是稳定的。4.2增加不同极点时 G2(s)的阶跃响应当p=0.01的阶跃响应当p=0.01时,对应的闭环传递函数为:Matlab指令:num=[1];den=[100,81,15.8,1.15];step(num,den);h=findobj(gcf,'Type','line');set(h,'LineWidth',3);得到图:.学习帮手..专业整理.图15 1(s)的阶跃响应曲线由阶跃响应曲线分析系统暂态性能 :曲线最大峰值为0.875,稳态值为0.87,上升时间tr=37.1s超调时间tp=44.5s调节时间ts=31.7s, 2超调量 p%=0.569%当p=0.1的阶跃响应当p=0.1时,对应的闭环传递函数为num=[1];den=[10,9,2.3,1.15];step(num,den);h=findobj(gcf,'Type','line');set(h,'LineWidth',3);得到图:.学习帮手..专业整理.图16 2(s)的阶跃响应曲线由阶跃响应曲线分析系统暂态性能 :曲线最大峰值为1.37,稳态值为0.87,上升时间tr=5.84s超调时间tp=9.58s调节时间ts=69.7s, 2超调量 p%=57.2%当p=1的阶跃响应当p=1时,对应的闭环传递函数为Matlab指令:num=[1];den=[1,1.8,0.95,1.15];step(num,den);h=findobj(gcf,'Type','line');set(h,'LineWidth',3);.学习帮手..专业整理.图17 3(s)的阶跃响应曲线由阶跃响应曲线分析系统暂态性能 :曲线最大峰值为1.45,稳态值为0.87,上升时间tr=2.59s超调时间tp=4.38s调节时间ts=50s, 2超调量 p%=66.4%当p=10的阶跃响应当p=10时,对应的闭环传递函数为Matlab指令:num=[1];den=[0.1,1.08,0.815,1.15];step(num,den);h=findobj(gcf,'Type','line');set(h,'LineWidth',3);.学习帮手..专业整理.图18 4(s)的阶跃响应曲线由阶跃响应曲线分析系统暂态性能 :曲线最大峰值为1.16,稳态值为0.87,上升时间tr=1.97s超调时间tp=3.18s调节时间ts=10.5s, 2超调量 p%=33.7%当p=100的阶跃响应当p=100时,对应的闭环传递函数为Matlab指令:num=[1];den=[0.01,1.008,0.8015,1.15];step(num,den);h=findobj(gcf,'Type','line');set(h,'LineWidth',3);.学习帮手..专业整理.图19 5(s)的阶跃响应曲线由阶跃响应曲线分析系统暂态性能 :曲线最大峰值为1.12,稳态值为0.87,上升时间tr=1.95s超调时间tp=3.19s调节时间ts=10s, 2超调量 p%=28.8%4.3增加极点后对系统性能的影响分析根据图2,图15,图16,图17,图18,图19,可以得到原函数以及在原开环传递函数上增加一个零点s=-p,p分别取0.01,0.1,1,10,100的系统性能参数。如以下表2所示:plg(p)曲线峰值上升时间超调时间调节时间超调量原传递函数1.121.973.159.9528.30.01-20.87537.144.531.70.5690.1-11.375.849.5869.757.2101.452.594.385066.41011.161.973.1810.533.710021.121.953.191028.8表2根据表1可画出lgp与各个指标的关系曲线,如以下图20,图21,图22,.学习帮手..专业整理.图23和图24。因为原函数中的lga的值为负无穷,所以无法在图中直接反映,所以图20,图21,图22,图23和图24五个图反映的是,极点距离原点的远近对系统性能的影响。曲线峰值1.61.41.2值峰线曲

10.80.60.40.20-3 -2 -1 0 1 2 3lg(p)图20曲线峰值 Mr与lg(p)的关系间时升上

上升时间4035302520151050-3-2-10123lg(p)图21上升时间tr与lg(p)的关系.学习帮手..专业整理.超调时间间时调超

50454035302520151050-3 -2 -1 0 1 2 3lg(p)图22超调时间与 lg(p)的关系调节时间8070间时节调

6050403020100-3 -2 -1 0 1 2 3lg(p)图23调节时间与 lg(p)的关系.学习帮手..专业整理.超调量7060量调超

50403020100-3 -2 -1 0 1 2 3lg(p)图24超调量与 lg(p)的关系结论:1.增加不同的极点对系统参数有不同的影响 ;2.比较观察增加零点时的系统参数 (以上升时间 tr为例)的变化,可以发现,在某些区间(x1<a=p<x2)内,存在:,则,说明了极点与零点对系统系能的影响的差别;3.系统参数的变化有可能是随着p值的增加而震荡,但是数据量偏少,不能下结论;4.同时可以预见,当零点与原点的距离趋近于无穷远时,系统性能受到的影响趋近于0。dt.学习帮手.5.偶极子对系统性能影响的验证相距很近的闭环零点极点常被称为偶极子,经验指出,如果闭环零、极点之间的距离比它们本身的模值小一个数量级,则这一对闭环零极点就构成偶极子。偶极子中,远离原点的偶极子,其影响基本可略;接近原点的偶极子,其影响必须考虑。出于本报告只是验证该规律,所以不可对消偶极子和可对消偶.专业整理.极子各取一对。5.1不可对消偶极子取增加的极点p=-0.1和零点s=-0.09组成一对开环偶极子,那么可以得到的闭环传递函数为:为了得到新传递函数的性能参数 ,画出闭环传递函数的阶跃响应曲线 。Matlab指令:num=[1,0.09];den=[1,0.9,1.05,0.105];step(num,den);h=findobj(gcf, 'Type','line');set(h,'LineWidth',3);得到图:图25=由阶跃响应曲线分析系统暂态性能:曲线最大峰值为1.26,稳态值为0.857,上升时间tr=1.86超调时间tp=3.45s.学习帮手..专业整理.调节时间ts=22.3s, 2超调量 p%=46.5%.学习帮

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论