弧弦圆心角听课记录_第1页
弧弦圆心角听课记录_第2页
弧弦圆心角听课记录_第3页
弧弦圆心角听课记录_第4页
弧弦圆心角听课记录_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第#页共13页弧弦圆心角听课记录经典版)编制人:审核人:审批人:编制学校:编制时间:年月日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体会、其他范文等等,想了解不同范文格式和写法,敬请关注!Downloadtips:Thisdocumentiscarefullycompiledbythiseditor.Ihopethatafteryoudownloadit,itcanhelpyousolvepracticalproblems.Thedocumentcanbecustomizedandmodifiedafterdownloading,pleaseadjustanduseitaccordingtoactualneeds,thankyou!Inaddition,thisshopprovidesyouwithvarioustypesofclassicsampleessays,suchaspreschoollessonplans,elementaryschoollessonplans,middleschoollessonplans,teachingactivities,comments,messages,speechdrafts,workplans,worksummary,experience,andothersampleessays,etc.IwanttoknowPleasepayattentiontothedifferentformatandwritingstylesofsampleessays!弧弦圆心角听课记录这是弧弦圆心角听课记录,是优秀的数学教案文章,供老师家长们参考学习。弧弦圆心角听课记录第1篇我执教一节九年级数学《弧、弦、圆心角》的公开课。课前,我精心编制了导学案,在导学案中我把该课内容分成了二大板块,每一板块安排两个组准备展示方案,再优选一个组进行展示。每一板块我都把知识点进行了问题化的分解,以便于学生更好的自学;设置了互动策略与展示方案的预设。我提前把导学案发给了学生,并布置学生对着导学案进行预习,完成了独立学习的环节。上课时,我简单出示课题后,分配各组进行10分钟的对学与讨论,各组立即行动起来:有用小黑板进行讲解的,有对着书两个、三个在一起讨论的,尤其是第五组同学,六个同学分成了每二人在一起进行对学。分到任务的小组根据展示方案的预设同时要安排展示任务。我一直在每个小组进行巡视,了解各组的'对学与讨论效果,对有困难的小组进行适当的引导与帮助。在这个过程中,同学们全身心地投入,充分展现了他们的独学、对学、合作探究能力。学生在讨论结束后,一到四组分别阐述了他们的展示方案,赢得了展示任务的第二组在组长陈梦萍同学的带领下,讲解条理清晰,逻辑性强,互动精彩,组长的补充为组员的展示起到画龙点睛的作用;组员徐家豪作为一位后进生,在讲解圆心角的概念时,能抓住概念的核心,即顶点要在圆心上的角,并举了一个顶点不在圆心上的角的例子向其他同学进行提问讲解,他能把该问题讲解的如此透彻,可见课改中的对学与讨论环节对于中下生具有很大的帮助;在讲解圆心角相等,所对的弦相等时,能够把扇形折叠成三角形直观的得出弦相等。当然,在展示过程中,第二组有些同学过于紧张,导致没有很好的参与组内的展示。第四组准备的方案与展示过程不一致,第三组准备的方案不够充分与细致。在这个过程中,同学们充分表现了自己的自信与胆量,让我真正懂的了“给学生一个机会,他还给你一个精彩”。点评过程中,参与点评的同学能针对问题的关键点与着重点进行点评,针对第四组的点评,同学们点评了该组在讲解定理时,没有讲清楚等圆时该定理的关系、小组准备展示方案不够完善、没有用证明的方法说明定理的关系等。通过此节课的教学,让我看到了课改的精髓与魅力,并坚信要持之以恒地把课改深入进行下去。弧弦圆心角听课记录第2篇本节课的教学策略是通过学生自己动手画图叠合、观察思考等操作活动,让学生亲身经历知识的发生、发展及其探求过程,再者通过教师演示动态教具及引导,让学生感受圆的旋转不变性;并得出圆心角、弧、弦、弦心距四者之间的关系;能用这一关系定理,解决圆的计算证明问题;同时注重培养学生的探索能力逻辑推理能力;力求体验数学的生活性、趣味性,进一步感受圆的美,激发学习兴趣。反思这节课,我有以下体会:1、重视学生已有知识的复习,从动手操作着手通过前一节课“圆是轴对称图形,也是中心对称图形”这一知识的复习,让学生动手操作直观看到真实的世界中的“圆的旋转不变性”,加强学生的感性认识。2、用多种感官感受数学,培养数学情感。学生在本课中不仅要用耳朵听数学,而且要用眼睛观察数学现象,通过数学教具的演示和教师对定理的讲解来理解数学知识,在探讨、交流、分析中获得数学知识。3、注重培养学生的语言概括能力,培养逻辑推理能力在定理的结论得出时,让学生用自己的语言概括结论,用符号语言表示结论;在例题的推理过程中,强调每一步的理由,追问理由是学过哪个的定义、定理或已知条件。4、重视数学知识的形成过程,让学生感受到学习的快乐。教学中引导学生从同圆,等圆两种情况进行分析,用旋转叠合推导圆心角定理的证明过程。定理学完后,马上进行适当的练习加以巩固,让学生在思考与回答的过程中体会到学习数学的快乐。5、训练及时,关注中下层学生。通过设计四个有梯度的问题,培养学生的发散思维能力。让不同层次学生通过思考,都能有所得,在提问时照顾了中下层学生。6、注重知识内容的总结和学习方法的归纳。作业效果良好存在的不足:1、时间分配不合理,在引导学生证明由圆心角相等得到弦心距相等这一问题时,用了较长时间,导致在备课时预设的一个能力提升题,一个用本节知识解决生活中的几等分圆的实际问题没有时间研究。这样可能不能满足优生的学习需要,没能很好地加强抽象的数学定理与生活实际的距离。2、还可让学生多一些动手操作的时间,让学生当小老师,给学生多一些展示机会,在操作中加深对“圆心角定理”推导过程的体验。3、我在教学中力求加强学生的归纳能力和语言组织能力的培养,但这方面做的还是很不够。4、教学中教师的激情还不够,肢体语言、表情还可丰富些,自身的教学艺术还待进一步提高。总之今后还要多学习,多研究,力求把每一节数学课上的精采,上的高效!弧弦圆心角听课记录第3篇关于圆心角、弧、弦的关系知识点1.圆不只是轴对称图形,还是中心对称图形,并且圆绕圆心旋转任意角度都能与圆图形重合。2.圆心角:顶点在原新的角叫做圆心角,从圆心到弦的距离叫做弦心距。相关定理:在同圆或等圆中,相等的圆心角所对的互相等,所对的弦相等,所对的弦的弦心距相等。推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组相等,那么它们所对应的其他各组量都分别相同。注意:要正确理解和使用圆心叫定理及推论。(1)不要忽视“在同圆或等圆”这个前提条件,若没有这一条件虽然圆心角相同,但所对应的弧、弦、弦心距不一定相同。如图,同心圆,虽然角AOB等于角COD,但是弧AB不等于弧CD,并且弦AB不等于弦CD,弦AB的弦心距也不等于弦CD的弦心距。中考数学专题宝典——圆心角、弧、弦的关系知识点总结(2)要结合图形深入的理解圆心角、弧、弦、弦心距这四个概念,与“所对应”一词的含义,从而正确用上述关系下面列举四个错误的例子若圆O中,弧AC等于弧DB,则CE=FD,角CEA等于角DFB中考数学专题宝典——圆心角、弧、弦的关系知识点总结这两个结论都是错误的,首先CE、FD不是弦,角CEA、角BFD不是圆心角,就不可以用圆心角定理推论证明(3)同一条弦对应两条弧,期中一条是优弧,一条是劣弧,同时在此定理推论中“弧”是指同为优弧或同为劣弧.(一般说的是劣弧)(4)在具体运用定理或推论解决问题时可根据需要,选择有关部分,如“等弧所对的圆心角相同”,在“同圆中,相等的弦所对的劣弧相等”等。1度的弧:因为同圆中相等的圆心角所对的弧相同,所以整个圆也被分成360份,我们把每一份这样的弧叫做1度的弧。一般地,n度的圆心角对着n度的弧,n度的弧对着n度的圆心角,也就是说,圆心角的度数和它所对的弧的度数相等。注意:这里说的相等是指角的度数与弧的度数相等。而不是角与弧相同,在书写时要防止出现“角AOB等于弧AB”之类的错误。因为角与弧是相隔不能比较变量的概念。相等的弧一定是相同度数的弧,但相同度数的弧却不一定是相同的弧中考数学专题宝典——圆心角、弧、弦的关系知识点总结圆中弧、圆心角、弦、弦心距的不等关系(1)在同圆或等圆中,如果弦不等,那么弦心距也就不等,大弦的弦心距较小,小弦的弦心距反而大,反之弦心距较小时,则弦较大。当弦为圆中的最大弦(直径)时,弦心距缩小为零;当弦逐步缩小时,趋近于零时,弦心距逐步增大,趋近与半径。(2)在同圆或等圆中,如果弧不等,那么弧所对的弦、圆心角也不同,且大弧所对应的圆心角较大,反之也成立。注意:不能认为大弧所对的弦也较大,只有当弧时劣弧时,这一命题才能成立,半圆对的弦最大,当弧为优弧时,弧越大,对的弦越短。辅助线方法小结:(1)有弦的中点时,长连接弦心距,进而可利用垂径定理或圆心角、弦、弦心距、弧关系定理;另外,证明两弦相等也常作弦心距。(2)在计算弧的度数时,或有等弧的条件时,或证等弧时,常做弧所对的圆心角。(3)有弧的中点或证弧的中点时,常有以下几种添加辅助线的方法:(I)连对弧中点的半径;(II)连等弧对的弦;(III)作等弧所对的圆心角。弧弦圆心角听课记录第4篇教学目标知识技能1.通过观察实验,使学生了解圆心角的概念.掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等,以及它们在解题中的应用.过程方法通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题,进一步理解和体会研究几何图形的各种方法.情感态度激发学生观察、探究、发现数学问题的兴趣和欲望.教学重点在同圆或等圆中,相等的圆心角所对的弧相等,□所对弦也相等及其两个推论和它们的应用.教学难点探索定理和推导及其应用.教学过程设计教学程序及教学内容师生行为设计意图一、导语这节课我们继续研究圆的性质,请同学们完成下题.已知AOAB,如图所示,作出绕0点旋转30、45、60的图形.圆是中心对称图形吗?将圆旋转任意角度后会出现什么情况?我们学过的几何图形中既是中心对称图形,又是轴对称图形的是?二、探究新知(一)、圆心角定义在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角•如图所示,AOB的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.(二)、圆心角、弧、弦之间的关系定理按下列要求作图并回答问题:如图所示的00中,分别作相等的圆心角A0B□和AD0B□将圆心角A0B绕圆心0旋转到A'OB'的位置,你能发现哪些等量关系?为什么?得到:在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.在等圆中相等的圆心角是否也有所对的弧相等,所对的弦相等呢?综合1、2,我们可以得到关于圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.分析定理:去掉“在同圆或等圆中”这个条件,行吗?定理拓展:O1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分别相等吗?02在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的弧也分别相等吗?综上得到在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等.在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等.综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.、定理应用1.课本例12.如图,在00中,AB、CD是两条弦,OEAB,0FCD,垂足分别为EF.如果A0B=C0D,那么0E与OF的大小有什么关系?为什么?如果OE=OF,那么与的大小有什么关系?AB与CD的大小有什么关系?□为什么?AOB与COD呢?三、课堂训练完成课本83页练习补充:如图3和图4,MN是00的直径,弦AB、CD□相交于MND上的一点P,DAPM二CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在。0的.外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.四、小结归纳1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,□则它们所对应的其余各组量都分别相等,及它们的应用.五、作业设计作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做.教师布置学生画图,复习旋转知识,为探究本节课定理作铺垫学生通过画图复习旋转知识,明白绕0点旋转,0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论