南侨中学20232023届高三物理专题(四)_第1页
南侨中学20232023届高三物理专题(四)_第2页
南侨中学20232023届高三物理专题(四)_第3页
南侨中学20232023届高三物理专题(四)_第4页
南侨中学20232023届高三物理专题(四)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

名称:功和能专题功的知识一:知识网络功的知识功率知识功功率知识功交通工具及其两启动功交通工具及其两启动功合外力所做的功等于(量度)物体动能的变化。即动能定理合外力所做的功等于(量度)物体动能的变化。即动能定理重力(电场力)做功等于重力势能(势能)变化的相反值重力(电场力)做功等于重力势能(势能)变化的相反值功是能的转化量度功是能的转化量度只有重力和弹簧的弹力(弹簧是对象)做功机械能守恒只有重力和弹簧的弹力(弹簧是对象)做功机械能守恒除重力和弹力之外的力做的功量度机械能的变化除重力和弹力之外的力做的功量度机械能的变化一对滑动摩擦力做的总功量度内能增加的量一对滑动摩擦力做的总功量度内能增加的量能的知识能的知识能具体的能能具体的能能的守恒定律能的守恒定律二:夯实基础(一):功.1、功的两个必要因素:(功的单位焦耳,简称焦,符号J)作用在物体上的力;物体在力的方向上发生的位移.2、功(符号w)是一个标量,W=Fscos(是力和位移的夹角,F应是恒力)(1)、如果力是直接作用在物体上,则s为物体的位移.(2)、如果力是间接作用在物体上,则s为作用点的位移.[注意]:①1J等于1N的力使物体在力的方向上发生1m的位移时所做的功.②当α=/2时,cosα=0,W=0;当α</2时,cosα>0,W>0(正功;力做正功该力是动力);当α>/2时,cosα<0,W<0(负功;力做负功该力是阻力,例:重力对球作了-6J的功,可以说成球克服重力做了6J的功,力对该物体做负功,通常说成物体克服力做了正功).=3\*GB3③物体做匀减速直线运动,拉力F可能做正功,也可能做负功.=4\*GB3④向心力一定不做功(微元法).例如:摆钟重力做功,拉力不做功=5\*GB3⑤作用力与反作用力做功情况:可能一个正功,一个负功;可能一个负功,一个负功;可能一个正功,一个正功;可能一个不做功,一个不做功;可能一个不做功,一个负功(正功).=6\*GB3⑥重力做功:Wab=mghab电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}(二)功率.1、功与完成这些功的所用时间的比值叫做功率.2、公式:(指与的夹角)(1)、当F是恒力时,表示时,表示平均功率,.(2)、当表示时,F可以是恒力,可以是变力,表示瞬时功率(无瞬时功),.[注意]:①在国际制单位制中,功的单位是焦,时间单位为秒,功率的单位是焦/秒,即瓦特,简称瓦,符号是w,1w=1J/s的含义:物体每秒做的功是1J.1Kw=103w1Mw=106w②功率越大/小,做功越快/慢.(功率是描述做功快慢的物理量)

③若力大,速度大,则功率一定大.(×)[P=Fvcosα]=4\*GB3④电功率:P=UI(普适式)=5\*GB3⑤电热功率:PQ=I2R(三)机动车辆常见的两种启动过程1、额定功率与实际功率:额定功率:发动机正常工作时的最大功率.实际功率:发动机实际输出的功率,它可以小于额定功率,但不能长时间超过额定功率.

2、对于汽车或机车等交通工具,在静止开始启动的过程中,发动机的输出功率、牵引力和速度的关系满足公式P=F·v,在P、F、v三个物理量中,若保持一个量不变,当另一个量变化时,第三个量也随之变化。关于汽车的启动过程是一个较为复杂的物理过程,下面我们就两种常见的启动过程分析如下:3、汽车(或机车)以恒定的功率启动和行驶过程(请把握教材的难度和课标的难度)汽车牵引功率保持恒定时,由P=FV可知,牵引力大小与速度成反比。结合牛顿第二定律F–f=ma可知,汽车以恒定功率启动的过程,随着汽车速度V的逐渐增大,汽车的加速度逐渐减小,直至加速度等于0,最后汽车做匀速运动。4、机车以恒定的牵引力启动的过程:机车做的是加速度a=(F-f)/m的匀加速直线运动,汽车的输出功率P随汽车速度增大而增大,直至汽车输出功率等于额定功率,匀加速过程结束。接着汽车保持功率不变,汽车通过减少牵引力,进一步提高速度,直到加速度a=0,最后做匀速行驶运动。(四)能:一个物体能够对外做功,我们说这个物体具有能量.1、能量是一个状态量,自然界存在多种形式能,各种形式的能间可相互转化,转化过程中能守恒.2、动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}[注意]:=1\*GB3①物体的动能具有相对性,它与参考系密切相关.(例:某一物体在行使的汽车里,它的动能是零,但对路旁的行人,它具有动能)=2\*GB3②物体的动能是标量,它总是大于等于零,不可能出现负值,但动能的变化量可能出现负值.3、重力势能:[注意]:①重力势能是标量,但有“正、负”之分.“正”表示物体的能量状态比参考面高;“负”表示物体的能量状态比参考面(任意选取)低.(即重力势能可大于零,小于零,等于零,10J>-10J)②重力所做的功只跟初位置的高度和末位置的高度有关,跟物体运动路径无关.③重力做功与重力势能的关系:重力做正功,重力势能减小;克服重力做功(重力做负功),重力势能增大.(物体下降时,WG=mgh;物体上升时,WG=;物体高度不变时,WG=0)=4\*GB3④高度差与参考平面的选取无关,只与高度有关.4、弹性势能:恢复形变的过程中对外做的功.形变越大,弹性势能越大.形变消失,弹性势能为零.(为形变量)做选择题可偷着用,但解答题中不能用。5、机械能:物体具有动能和势能(重力势能和弹性势能)的统称.6、内能:摩擦生热,电流的热效应即电热。*7、电势能:EA=qφAA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}8、能量守恒定律。(五)、功和能的关系1、功是能量转化的量度。2、动能定理:外力对物体所做的总功等于物体动能的变化.表达式W合=mvt2/2-mvo2/2或W合=ΔEK(1)动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于变力及物体作曲线运动的情况.(2)功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式.

(3)应用动能定理只考虑初、末状态,没有守恒条件的限制,也不受力的性质和物理过程的变化的影响.所以,凡涉及力和位移,而不涉及力的作用时间的动力学问题,都可以用动能定理分析和解答,而且一般都比用牛顿运动定律和机械能守恒定律简捷.

(4)当物体的运动是由几个物理过程所组成,又不需要研究过程的中间状态时,可以把这几个物理过程看作一个整体进行研究,从而避开每个运动过程的具体细节,具有过程简明、方法巧妙、运算量小等优点.

3、机械能守恒定律

(1)动能和势能(重力势能、弹性势能)统称为机械能,E=Ek+Ep.

(2)机械能守恒定律的内容:在只有重力(和弹簧弹力)做功的情形下,物体动能和重力势能(及弹性势能)发生相互转化,但机械能的总量保持不变.(3)机械能守恒定律的表达式

(4)系统机械能守恒的三种表示方式:

①系统初态的总机械能E1等于末态的总机械能E2,即E1=E2②系统减少的总重力势能ΔEP减等于系统增加的总动能ΔEK增,即ΔEP减=ΔEK增③若系统只有A、B两物体,则A物体减少的机械能等于B物体增加的机械能,即ΔEA减=ΔEB增

[注意]解题时究竟选取哪一种表达形式,应根据题意灵活选取;需注意的是:选用①式时,必须规定零势能参考面,而选用②式和③式时,可以不规定零势能参考面,但必须分清能量的减少量和增加量.

(5)判断机械能是否守恒的方法

①用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹簧弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒.

②用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.

③对一些绳子突然绷紧,物体间非弹性碰撞等问题,除非题目特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能也不守恒.

5、电热:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}6、纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt7、重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少;8、摩擦力、空气阻力做功的计算:功的大小等于力和路程的乘积.

发生相对运动的两物体的这一对相互摩擦力做的总功:W=fd(d是两物体间的相对路程),且W=Q(摩擦生热)注:能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;三:思维方式牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙(现今动量观点退舞台).其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,在综合考试情况下,常常设计的考题(或情景)会要三把钥匙结合起来使用,就能快速有效地解决问题.不过新课改情况下动量观点不会做为综合在内,而且在这三种观点中能量观点常常首选的,因为能量观点若能解决,则其解答过程一般地简捷。(内在原因是能量观点是从标量角度来思考问题的解决方式)应用动能定理时,研究对象可以是单个物体,也可以是多个物体组成的系统,机械能守恒定律时,研究对象必定是系统(但常常说成某个和某几个);此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。因此,在用它们解题时,首先应选好研究对象和研究过程。对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。选取时应注意以下几点:1.选取研究对象和研究过程,要建立在分析物理过程的基础上。临界状态往往应作为研究过程的开始或结束状态。2.要能视情况对研究过程进行恰当的理想化处理。3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原则是:1.对单个物体,宜选用动能定理,其中涉及位移的应选用动能定理。2.若是多个物体组成的系统,优先考虑两个守恒定律。3.若涉及系统内物体的相对位移(路程)并涉及摩擦力的,要考虑应用能量守恒定律。四:典型例题(一)基本概念、方法、规律的理解θLmF【例1】如图所示,质量为m的小球用长L的细线悬挂而静止在竖直位置。在下列三种情况下,分别用水平拉力F将小球拉到细线与竖直方向成θθLmF⑴用F缓慢地拉;⑵F为恒力;⑶若F为恒力,而且拉到该位置时小球的速度刚好为零。可供选择的答案有A.B.C.D.解析:⑴若用F缓慢地拉,则显然F为变力,高中阶段用动能定理求解比较顺利。F做的功等于该过程克服重力做的功。选D⑵若F为恒力,则可以直接按定义求功。选B⑶若F为恒力,而且拉到该位置时小球的速度刚好为零,那么按定义直接求功和按动能定理求功都是正确的。选B、D【例2】用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升。如果前后两过程的运动时间相同,不计空气阻力,则()A.加速过程中拉力做的功比匀速过程中拉力做的功大B.匀速过程中拉力做的功比加速过程中拉力做的功大C.两过程中拉力做的功一样大D.上述三种情况都有可能解析:应先分别求出两过程中拉力做的功,再进行比较。重物在竖直方向上仅受两个力作用,重力mg、拉力F。匀加速提升重物时,设拉力为F1,物体向上的加速度为a,根据牛顿第二定律得F1-mg=ma拉力F1所做的功①匀速提升重物时,设拉力为F2,根据平衡条件得F2=mg匀速运动的位移所以匀速提升重物时拉力的功②比较①、②式知:当a>g时,;当a=g时,;当a<g时,故D选项正确。点评:可见,力对物体所做的功的多少,只决定于力、位移、力和位移间夹角的大小,而跟物体的运动状态无关。在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力的功。功的物理含义:关于功我们不仅要从定义式W=Fscosα进行理解和计算,还应理解它的物理含义.功是能量转化的量度,即:做功的过程是能量的一个转化过程,这个过程做了多少功,就有多少能量发生了转化.对物体做正功,物体的能量增加.做了多少正功,物体的能量就增加了多少;对物体做负功,也称物体克服阻力做功,物体的能量减少,做了多少负功,物体的能量就减少多少.因此功的正、负表示能的转化情况,表示物体是输入了能量还是输出了能量.【例3】质量为m的物体,受水平力F的作用,在粗糙的水平面上运动,下列说法中正确的是()A.如果物体做加速直线运动,F一定做正功B.如果物体做减速直线运动,F一定做负功C.如果物体做减速直线运动,F可能做正功D.如果物体做匀速直线运动,F一定做正功解析:物体在粗糙水平面上运动,它必将受到滑动摩擦力,其方向和物体相对水平面的运动方向相反。当物体做加速运动时,其力F方向必与物体运动方向夹锐角(含方向相同),这样才能使加速度方向与物体运动的方向相同。此时,力F与物体位移的方向夹锐角,所以,力F对物体做正功,A对。当物体做减速运动时,力F的方向可以与物体的运动方向夹锐角也可以夹钝角(含方向相反),只要物体所受合力与物体运动方向相反即可,可见,物体做减速运动时,力F可能对物体做正功,也可能对物体做负功,B错,C对。当物体做匀速运动时,力F的方向必与滑动摩擦力的方向相反,即与物体位移方向相同,所以,力F做正功,D对。故A、C、D是正确的。【例4】如图所示,均匀长直木板长L=40cm,放在水平桌面上,它的右端与桌边相齐,木板质量m=2kg,与桌面间的摩擦因数μ=0.2,今用水平推力F将其推下桌子,则水平推力至少做功为()(g取10/s2)A.0.8JB.1.6JC.8JD.4J解析:将木板推下桌子即木块的重心要通过桌子边缘,水平推力做的功至少等于克服滑动摩擦力做的功,J。故A是正确的。【例5】关于力对物体做功,以下说法正确的是()A.一对作用力和反作用力在相同时间内做的功一定大小相等,正负相反B.不论怎样的力对物体做功,都可以用W=FscosαC.合外力对物体不作功,物体必定做匀速直线运动D.滑动摩擦力和静摩擦力都可以对物体做正功或负功解析:一对作用力和反作用力一定大小相等、方向相反,而相互作用的两物体所发生的位移不一定相等,它们所做的功不一定大小相等,所以,它们所做的功不一定大小相等,正负相反。公式W=Fscosα,只适用于恒力功的计算。合外力不做功,物体可以处于静止。滑动摩擦力、静摩擦力都可以做正功或负功,如:在一加速行驶的卡车上的箱子,若箱子在车上打滑(有相对运动),箱子受滑动摩擦力,此力对箱子做正功;若箱子不打滑(无相对运动),箱子受静摩擦力,对箱子也做正功。故D是正确的。一对作用力和反作用力做功的特点(1)一对作用力和反作用力在同一段时间内,可以都做正功、或者都做负功,或者一个做正功、一个做负功,或者都不做功。(2)一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零。(3)一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。点评:一对作用力和反作用力在同一段时间内的冲量一定大小相等,方向相反,矢量和为零。【例6】.如图所示,恒定的拉力大小F=8N,方向与水平线夹θ=60°角,拉着绳头使物体沿水平面移动=2m的过程中,拉力做了多少功?分析:常会有同学做这样的分析与计算:力的大小为S==2m,力与位移的方向间夹角为60°,所以:其实,这样的计算是错误的。解答:如图12-2所示,随着物体沿水平面前进=2m,绳头从A点被拉到B点,由此可见:拉F所作用的物体(绳头)的位移S可由几何关系求得为而力F与位移S间的夹角为所以,这过程中拉F作用于绳头所做的功为(图12-2)二、功率功率是描述做功快慢的物理量。⑴功率的定义式:,所求出的功率是时间t内的平均功率。⑵功率的计算式:P=Fvcosθ,其中θ是力与速度间的夹角。该公式有两种用法:①求某一时刻的瞬时功率。这时F是该时刻的作用力大小,v取瞬时值,对应的P为F在该时刻的瞬时功率;②当v为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F必须为恒力,对应的P为F在该段时间内的平均功率。vafF⑶重力的功率可表示为PG=vafF⑷汽车的两种加速问题。当汽车从静止开始沿水平面加速运动时,有两种不同的加速过程,但分析时采用的基本公式都是P=Fv和F-f=ma①恒定功率的加速。由公式P=Fv和F-f=ma知,由于P恒定,随着v的增大,F必将减小,a也必将减小,汽车做加速度不断减小的加速运动,直到F=f,a=0,这时v达到最大值。可见恒定功率的加速一定不是匀加速。这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力)。②恒定牵引力的加速。由公式P=Fv和F-f=ma知,由于F恒定,所以a恒定,汽车做匀加速运动,而随着v的增大,P也将不断增大,直到P达到额定功率Pm,功率不能再增大了。这时匀加速运动结束,其最大速度为,此后汽车要想继续加速就只能做恒定功率的变加速运动了。可见恒定牵引力的加速时功率一定不恒定。这种加速过程发动机做的功只能用W=Fs计算,不能用W=Pt计算(因为P为变功率)。要注意两种加速运动过程的最大速度的区别。【例7】质量为2t的农用汽车,发动机额定功率为30kW,汽车在水平路面行驶时能达到的最大时速为54km/h。若汽车以额定功率从静止开始加速,当其速度达到v=36km/h时的瞬时加速度是多大?解析:汽车在水平路面行驶达到最大速度时牵引力F等于阻力f,即Pm=fvm,而速度为v时的牵引力F=Pm/v,再利用F-f=ma,可以求得这时的a=0.50m/s2【例8】卡车在平直公路上从静止开始加速行驶,经时间t前进距离s,速度达到最大值vm。设此过程中发动机功率恒为P,卡车所受阻力为f,则这段时间内,发动机所做的功为()A.PtB.fsC.Pt=fsD.fvmt解析:发动机所做的功是指牵引力的功。由于卡车以恒定功率运动,所以发动机所做的功应等于发动机的功率乘以卡车行驶的时间,∴A对。B项给出的是卡车克服阻力做的功,在这段时间内,牵引力的功除了克服阻力做功外还要增加卡车的功能,∴B错。C项给出的是卡车所受外力的总功。D项中,卡车以恒功率前进,将做加速度逐渐减小的加速运动,达到最大速度时牵引力等于阻力,阻力f乘以最大速度是发动机的功率,再乘以t恰是发动机在t时间内做的功。故AD是正确的。【例9】质量为0.5kg的物体从高处自由下落,在下落的前2s内重力对物体做的功是多少?这2s内重力对物体做功的平均功率是多少?2s末,重力对物体做功的即时功率是多少?(g取)解析:前2s,m,,平均功率W,2s末速度,2s末即时功率W。【例10】.如图甲所示,滑轮质量、摩擦均不计,质量为2kg的物体在F作用下由静止开始向上做匀加速运动,其速度随时间的变化关系如图乙所示,由此可知()(g取10m/s2)A.物体加速度大小为2m/s2B.F的大小为21NC.4s末F的功率大小为42WD.4s内F做功的平均功率为42W【例11】某商场安装了一台倾角为30°的自动扶梯,该扶梯在电压为380V的电动机带动下以0.4m/s的恒定速率向斜上方移动,电动机的最大输出功率为4.9kkw。不载人时测得电动机中的电流为5A,若载人时传颂梯的移动速度和不载人时相同,设人的平均质量为60kg,则这台自动扶梯可同时乘载的最多人数为多少?(g=10m/s2分析与解电动机的电压恒为380V,扶梯不载人时,电动机中的电流为5A,忽略掉电动机内阻的消耗,认为电动机的输入功率和输出功率相等,即可得到维持扶梯运转的功率为电动机的最大输出功率为可用于输送顾客的功率为由于扶梯以恒定速率向斜上方移动,每一位顾客所受的力为重力mg和支持力,且FN=mg电动机通过扶梯的支持力FN对顾客做功,对每一位顾客做功的功率为P1=Fnvcosa=mgvcos(90°-30°)=120W则,同时乘载的最多人数人人点评实际中的问题都是复杂的,受多方面的因素制约,解决这种问题,首先要突出实际问题的主要因素,忽略次要因素,把复杂的实际问题抽象成简单的物理模型,建立合适的物理模型是解决实际问题的重点,也是难点。解决物理问题的一个基本思想是过能量守恒计算。很多看似难以解决的问题,都可以通过能量这条纽带联系起来的,这是一种常用且非常重要的物理思想方法,运用这种方法不仅使解题过程得以简化,而且可以非常深刻地揭示问题的物理意义。运用机械功率公式P=Fv要特别注意力的方向和速度方向之间的角度,v指的是力方向上的速度。本题在计算扶梯对每个顾客做功功率P时,P1=Fnvcosa=mgvcos(90°-30°),不能忽略cosa,a角为支持力Fn与顾客速度的夹角。【例12】.质量为m=1kg的物体以v0=10m/s的速度水平抛出,空气阻力不计,取g=10m/s2,则在第1s内重力做功为________________J;第1s内重力做功的平均功率为__________W;第1s末重力做功的瞬时功率为____________W;第1s内物体增加的动能为____________J;第1s内物体减少的重力势能____________J。分析:此道题考察了功、功率、动能、重力势能等概念以及与上述概念相关的动能定理,机械能守恒定律等规律。解答:重力做的功等于重力与物体沿重力方向(竖直方向)上位移的乘积,而第1s内物体沿竖直方向的位移为所以有:由平均功率的定义得瞬时功率一般计算可用力与力的方向上的瞬时速度的相乘而得,第1s末物体沿重力方向上的速度为所以有考虑到平抛运动过程中只有重力做功,于是由动能定理得又由于只有重力做功其机械能守恒,增加的动能应与减少的重力势能相等。于是又可直接得此例应依次填充:50;50;100;50;50。(二)求变力做功的几种方法功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,本文对变力做功问题进行归纳总结如下:一、等值法等值法即若某一变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。而恒力做功又可以用W=FScosa计算,从而使问题变得简单。例1、如图1,定滑轮至滑块的高度为h,已知细绳的拉力为F牛(恒定),滑块沿水平面由A点前进s米至B点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。求滑块由A点运动到B点过程中,绳的拉力对滑块所做的功。分析:设绳对物体的拉力为T,显然人对绳的拉力F等于T。T在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。而拉力F的大小和方向都不变,所以F做的功可以用公式W=FScosa直接计算。由图可知,在绳与水平面的夹角由α变到β的过程中,拉力F的作用点的位移大小为:二、微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。例2、如图2所示,某力F=10牛作用于半径R=1米的转盘的边缘上,力F的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F做的总功应为:A0焦耳B20π焦耳C10焦耳D20焦耳分析:把圆周分成无限个小元段,每个小元段可认为与力在同一直线上,故ΔW=FΔS,则转一周中各个小元段做功的代数和为W=F×2πR=10×2πJ=20πJ,故B正确。三、平均力法如果力的方向不变,力的大小对位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,利用功的定义式求功。例3、一辆汽车质量为105千克,从静止开始运动,其阻力为车重的0.05倍。其牵引力的大小与车前进的距离变化关系为F=103x+f0,f0是车所受的阻力。当车前进分析:由于车的牵引力和位移的关系为F=103x+f0,是线性关系,故前进100米过程中的牵引力做的功可看作是平均牵引力所做的功。由题意可知f0=0.05×105×10N=5×104N,所以前进100米过程中的平均牵引力=N=1×105N,∴W=S=1×105×100J=1×107J。四、图象法如果力F随位移的变化关系明确,始末位置清楚,可在平面直角坐标系内画出F—x图象,图象下方与坐标轴所围的“面积”即表示功。例如4:对于例3除可用平均力法计算外也可用图象法。由F=103x+f0可知,当x变化时,F也随着变化,故本题是属于变力做功问题,下面用图象求解。牵引力表达式为F=103x+0.5×105,其函数表达图象如图3。根据F-x图象所围的面积表示牵引力所做的功,故牵引力所做的功等于梯形OABD的“面积”。所以。五、能量转化法求变力做功功是能量转化的量度,已知外力做功情况可计算能量的转化,同样根据能量的转化也可求外力所做功的多少。因此根据动能定理、机械能守恒定律、功能关系等可从能量改变的角度求功。1、用动能定理求变力做功动能定理的内容是:外力对物体所做的功等于物体动能的增量。它的表达式是W外=ΔEK,W外可以理解成所有外力做功的代数和,如果我们所研究的多个力中,只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功。例5、如图4所示,AB为1/4圆弧轨道,半径为0.8m,BC是水平轨道,长3m,BC处的摩擦系数为1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。分析:物体在从A滑到C的过程中,有重力、AB段的阻力、AC段的摩擦力共三个力做功,WG=mgR,fBC=umg,由于物体在AB段受的阻力是变力,做的功不能直接求。根据动能定理可知:W外=0,所以mgR-umg-WAB=0即WAB=mgR-umg=1×10×0.8-×1×10×3=6(J)2、用机械能守恒定律求变力做功如果物体只受重力和弹力作用,或只有重力或弹力做功时,满足机械能守恒定律。如果求弹力这个变力做的功,可用机械能守恒定律来求解。例6、如图5所示,质量m为2千克的物体,从光滑斜面的顶端A点以v0=5米/秒的初速度滑下,在D点与弹簧接触并将弹簧压缩到B点时的速度为零,已知从A到B的竖直高度h=5米,求弹簧的弹力对物体所做的功。分析:由于斜面光滑故机械能守恒,但弹簧的弹力是变力,弹力对物体做负功,弹簧的弹性势能增加,且弹力做的功的数值与弹性势能的增加量相等。取B所在水平面为零参考面,弹簧原长处D点为弹性势能的零参考点,则状态A:EA=mgh+mv02/2对状态B:EB=-W弹簧+0由机械能守恒定律得:W弹簧=-(mgh+mv02/2)=-125(J)。3、用功能原理求变力做功功能原理的内容是:系统所受的外力和内力(不包括重力和弹力)所做的功的代数和等于系统的机械能的增量,如果这些力中只有一个变力做功,且其它力所做的功及系统的机械能的变化量都比较容易求解时,就可用功能原理求解变力所做的功。例7、质量为2千克的均匀链条长为2米,自然堆放在光滑的水平面上,用力F竖直向上匀速提起此链条,已知提起链条的速度v=6米/秒,求该链条全部被提起时拉力F所做的功。分析:链条上提过程中提起部分的重力逐渐增大,链条保持匀速上升,故作用在链条上的拉力是变力,不能直接用功的公式求功。根据功能原理,上提过程拉力F做的功等于机械能的增量,故可以用功能原理求。当链条刚被全部提起时,动能没有变化,重心升高了L/2=1米,故机械能动变化量为:ΔE=mgL/2=2×10×1=20(J)根据功能原理力F所做的功为:W=20J4、用公式W=Pt求变力做功例8、质量为4000千克的汽车,由静止开始以恒定的功率前进,它经100/3秒的时间前进425米,这时候它达到最大速度15米/秒。假设汽车在前进中所受阻力不变,求阻力为多大。分析:汽车在运动过程中功率恒定,速度增加,所以牵引力不断减小,当减小到与阻力相等时速度达到最大值。汽车所受的阻力不变,牵引力是变力,牵引力所做的功不能用功的公式直接计算。由于汽车的功率恒定,汽车功率可用P=Fv求,速度最大时牵引力和阻力相等,故P=Fvm=fvm,所以汽车的牵引力做的功为W汽车=Pt=fvmt根据动能定理有:W汽车—fs=mvm2/2,即fvmt-fs=mvm2/2代入数值解得:f=6000N。变力做功的问题是一教学难点,在上述实例中,从不同的角度、用不同的方法阐述了求解变力做功的问题.在教学中,通过对变力做功问题的归类讨论,有利于提高学生灵活运用所学知识解决实际问题的能力,有利于培养学生的创造性思维,开阔学生解题的思路.三、动能定理1.动能定理的表述合外力做的功等于物体动能的变化。(这里的合外力指物体受到的所有外力的合力,包括重力)。表达式为W=ΔEK动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。实际应用时,后一种表述比较好操作。不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。动能定理是建立起过程量(功)和状态量(动能)间的联系。这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。【例1】一个质量为m的物体静止放在光滑水平面上,在互成60°角的大小相等的两个水平恒力作用下,经过一段时间,物体获得的速度为v,在力的方向上获得的速度分别为v1、v2,那么在这段时间内,其中一个力做的功为A.B.C.D.错解:在分力F1的方向上,由动动能定理得,故A正确。正解:在合力F的方向上,由动动能定理得,,某个分力的功为,故B正确。2.对外力做功与动能变化关系的理解:外力对物体做正功,物体的动能增加,这一外力有助于物体的运动,是动力;外力对物体做负功,物体的动能减少,这一外力是阻碍物体的运动,是阻力,外力对物体做负功往往又称物体克服阻力做功.功是能量转化的量度,外力对物体做了多少功;就有多少动能与其它形式的能发生了转化.所以外力对物体所做的功就等于物体动能的变化量.即.3.应用动能定理解题的步骤(1)确定研究对象和研究过程。和动量定理不同,动能定理的研究对象只能是单个物体,如果是系统,那么系统内的物体间不能有相对运动。(原因是:系统内所有内力的总冲量一定是零,而系统内所有内力做的总功不一定是零)。(3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。(4)写出物体的初、末动能。(5)按照动能定理列式求解。【例2】如图所示,斜面倾角为α,长为L,AB段光滑,BC段粗糙,且BC=2AB。质量为m的木块从斜面顶端无初速下滑,到达C端时速度刚好减小到零。求物体和斜面BC段间的动摩擦因数μ。αCBA解:以木块为对象,在下滑全过程中用动能定理:重力做的功为mgLsinααCBAmgLsinα=0,点评:从本例题可以看出,由于用动能定理列方程时不牵扯过程中不同阶段的加速度,所以比用牛顿定律和运动学方程解题简洁得多。【例3】将小球以初速度v0竖直上抛,在不计空气阻力的理想状况下,小球将上升到某一最大高度。由于有空气阻力,小球实际上升的最大高度只有该理想高度的80%。设空气阻力大小恒定,求小球落回抛出点时的速度大小v。vvvv/fGGf和,可得H=v02/2g,再以小球为对象,在有空气阻力的情况下对上升和下落的全过程用动能定理。全过程重力做的功为零,所以有:,解得h/10h/10h【例4】如图所示,质量为m的钢珠从高出地面h处由静止自由下落,落到地面进入沙坑h/10停止,则(1)钢珠在沙坑中受到的平均阻力是重力的多少倍?(2)若让钢珠进入沙坑h/8,则钢珠在h处的动能应为多少?设钢珠在沙坑中所受平均阻力大小不随深度改变。解析:(1)取钢珠为研究对象,对它的整个运动过程,由动能定理得W=WF+WG=△EK=0。取钢珠停止处所在水平面为重力势能的零参考平面,则重力的功WG=mgh,阻力的功WF=Ffh,代入得mghFfh=0,故有Ff/mg=11。即所求倍数为11。(2)设钢珠在h处的动能为EK,则对钢珠的整个运动过程,由动能定理得W=WF+WG=△EK=0,进一步展开为9mgh/8—Ffh/8=—EK,得EK=mgh/4。点评:对第(2)问,有的学生这样做,h/8—h/10=h/40,在h/40中阻力所做的功为Ffh/40=11mgh/40,因而钢珠在h处的动能EK=11mgh/40。这样做对吗?请思考。【例5】质量为M的木块放在水平台面上,台面比水平地面高出h=0.20m,木块离台的右端L=1.7m。质量为m=0.10M的子弹以v0=180m/s的速度水平射向木块,并以v=90m/s的速度水平射出,木块落到水平地面时的落地点到台面右端的水平距离为s=1.6m,求木块与台面间的动摩擦因数为μ。解:本题的物理过程可以分为三个阶段,在其中两个阶段中有机械能损失:子弹射穿木块阶段和木块在台面上滑行阶段。所以本题必须分三个阶段列方程:Lhs子弹射穿木块阶段,对系统用动量守恒,设木块末速度为v1,mv0=mv+MvLhs木块在台面上滑行阶段对木块用动能定理,设木块离开台面时的速度为v2,有:……②木块离开台面后的平抛阶段,……③由①、②、③可得μ=0.50点评:从本题应引起注意的是:凡是有机械能损失的过程,都应该分段处理。从本题还应引起注意的是:不要对系统用动能定理。在子弹穿过木块阶段,子弹和木块间的一对摩擦力做的总功为负功。如果对系统在全过程用动能定理,就会把这个负功漏掉。四、动能定理的综合应用动能定理可以由牛顿定律推导出来,原则上讲用动能定律能解决物理问题都可以利用牛顿定律解决,但在处理动力学问题中,若用牛顿第二定律和运动学公式来解,则要分阶段考虑,且必须分别求每个阶段中的加速度和末速度,计算较繁琐。但是,我们用动能定理来解就比较简捷。我们通过下面的例子再来体会一下用动能定理解决某些动力学问题的优越性。1.应用动能定理巧求变力的功如果我们所研究的问题中有多个力做功,其中只有一个力是变力,其余的都是恒力,而且这些恒力所做的功比较容易计算,研究对象本身的动能增量也比较容易计算时,用动能定理就可以求出这个变力所做的功。【例6】如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道

解析:物体在从A滑到C的过程中,有重力、AB段的阻力、BC段的摩擦力共三个力做功,WG=mgR,fBC=μmg,由于物体在AB段受的阻力是变力,做的功不能直接求。根据动能定理可知:W外=0,所以mgR-μmgS-WAB=0即WAB=mgR-μmgS=1×10×0.8-1×10×3/15=6J【例7】一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车过B点时的速度为vB.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.解析:设绳的P端到达B处时,左边绳与水平地面所成夹角为θ,物体从井底上升的高度为h,速度为v,所求的功为W,则据动能定理可得:因绳总长不变,所以:根据绳联物体的速度关系得:v=vBcosθ

由几何关系得:由以上四式求得:2.应用动能定理简解多过程问题。

物体在某个运动过程中包含有几个运动性质不同的小过程(如加速、减速的过程),此时可以分段考虑,也可以对全过程考虑,但如能对整个过程利用动能定理列式则使问题简化。【例8】如图所示,斜面足够长,其倾角为α,质量为m的滑块,距挡板P为s0,以初速度v0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?解析:滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端。在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功。设其经过和总路程为L,对全过程,由动能定理得:得3.利用动能定理巧求动摩擦因数【例9】如图所示,小滑块从斜面顶点A由静止滑至水平部分C点而停止。已知斜面高为h,滑块运动的整个水平距离为s,设转角B处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数。解析:滑块从A点滑到C点,只有重力和摩擦力做功,设滑块质量为m,动摩擦因数为,斜面倾角为,斜面底边长s1,水平部分长s2,由动能定理得:由以上两式得从计算结果可以看出,只要测出斜面高和水平部分长度,即可计算出动摩擦因数。4.利用动能定理巧求机车脱钩问题【例10】总质量为M的列车,沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力。设运动的阻力与质量成正比,机车的牵引力是恒定的。当列车的两部分都停止时,它们的距离是多少?解析:此题用动能定理求解比用运动学、牛顿第二定律求解简便。对车头,脱钩后的全过程用动能定理得:对车尾,脱钩后用动能定理得:而,由于原来列车是匀速前进的,所以F=kMg由以上方程解得。(四)机械能守恒定律1.机械能守恒定律的两种表述(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。2.对机械能守恒定律的理解:(1)机械能守恒定律的研究对象一定是系统,至少包括地球在内。通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。另外小球的动能中所用的v,也是相对于地面的速度。(2)当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。(3)“只有重力做功”不等于“只受重力作用”。在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。3.对机械能守恒条件的认识如果没有摩擦和介质阻力,物体只发生动能和势能的相互转化时,机械能的总量保持不变,这就是机械能守恒定律.没有摩擦和介质阻力,这是守恒条件.具体的讲,如果一个物理过程只有重力做功,是重力势能和动能之间发生相互转化,没有与其它形式的能发生转化,物体的动能和重力势能总和保持不变.如果只有弹簧的弹力做功,弹簧与物体这一系统,弹性势能与动能之间发生相互转化,不与其它形式的能发生转化,所以弹性势能和动能总和保持不变.分析一个物理过程是不是满足机械能守恒,关键是分析这一过程中有哪些力参与了做功,这一力做功是什么形式的能转化成什么形式的能.如果只是动能和势能的相互转化,而没有与其它形式的能发生转化,则机械能总和不变.如果没有力做功,不发生能的转化,机械能当然也不发生变化.【例1】如图物块和斜面都是光滑的,物块从静止沿斜面下滑过程中,物块机械能是否守恒?系统机械能是否守恒?解:以物块和斜面系统为研究对象,很明显物块下滑过程中系统不受摩擦和介质阻力,故系统机械能守恒。又由水平方向系统动量守恒可以得知:斜面将向左运动,即斜面的机械能将增大,故物块的机械能一定将减少。点评:有些同学一看本题说的是光滑斜面,容易错认为物块本身机械能就守恒。这里要提醒两条:⑴由于斜面本身要向左滑动,所以斜面对物块的弹力N和物块的实际位移s的方向已经不再垂直,弹力要对物块做负功,对物块来说已经不再满足“只有重力做功”的条件。⑵由于水平方向系统动量守恒,斜面一定会向右运动,其动能也只能是由物块的机械能转移而来,所以物块的机械能必然减少。4.机械能守恒定律的各种表达形式(1),即;(2);;(3)系统式点评:用(1)时,需要规定重力势能的参考平面。用(2)时则不必规定重力势能的参考平面,因为重力势能的改变量与参考平面的选取没有关系。尤其是用,只要把增加的机械能和减少的机械能都写出来,方程自然就列出来了。5.解题步骤⑴确定研究对象和研究过程。⑵判断机械能是否守恒。⑶选定一种表达式,列式求解。4.应用举例ABO【例2】如图所示,质量分别为2m和3m的两个小球固定在一根直角尺的两端A、B,直角尺的顶点O处有光滑的固定转动轴。AO、BO的长分别为2L和L。开始时直角尺的AO部分处于水平位置而B在O的正下方。让该系统由静止开始自由转动,求:⑴当A到达最低点时,A小球的速度大小v;⑵B球能上升的最大高度h;⑶开始转动后ABO解析:以直角尺和两小球组成的系统为对象,由于转动过程不受摩擦和介质阻力,所以该系统的机械能守恒。⑴过程中A的重力势能减少,A、B的动能和B的重力势能增加,A的即时速度总是B的2倍。,解得v1/2ABOv1OABαBOθαθA⑴⑵⑶⑵B球不可能到达O的正上方,它到达最大高度时速度一定为零,设该位置比OA竖直位置向左偏了α角。2mg2Lcosα=3mgv1/2ABOv1OABαBOθαθA⑴⑵⑶⑶B球速度最大时就是系统动能最大时,而系统动能增大等于系统重力做的功WG。设OA从开始转过θ角时B球速度最大,=2mg2Lsinθ-3mgL(1-cosθ)=mgL(4sinθ+3cosθ-3)≤2mgL,解得点评:本题如果用EP+EK=EP'+EK'这种表达形式,就需要规定重力势能的参考平面,显然比较烦琐。用就要简洁得多。下面再看一道例题。【例3】如图所示,半径为的光滑半圆上有两个小球,质量分别为,由细线挂着,今由静止开始无初速度自由释放,求小球升至最高点时两球的速度?解析:球沿半圆弧运动,绳长不变,两球通过的路程相等,上升的高度为;球下降的高度为;对于系统,由机械能守恒定律得:;【例4】如图所示,均匀铁链长为,平放在距离地面高为的光滑水平面上,其长度的悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度?方法1、选取地面为零势能面:方法2、桌面为零势能面:解得:点评:零势能面选取不同,所列出的表达式不同,虽然最后解得的结果是一样的,但解方程时的简易程度是不同的,从本例可以看出,方法二较为简捷。因此,灵活、准确地选取零势能面,往往会给题目的求解带来方便。本题用也可以求解,但不如用EP+EK=EP'+EK'简便,同学们可以自己试一下。因此,选用哪一种表达形式,要具体题目具体分析。二、机械能守恒定律的综合应用K【例5】如图所示,粗细均匀的U形管内装有总长为4L的水。开始时阀门K闭合,左右支管内水面高度差为L。打开阀门KK解析:由于不考虑摩擦阻力,故整个水柱的机械能守恒。从初始状态到左右支管水面相平为止,相当于有长L/2的水柱由左管移到右管。系统的重力势能减少,动能增加。该过程中,整个水柱势能的减少量等效于高L/2的水柱降低L/2重力势能的减少。不妨设水柱总质量为8m,则,得。点评:本题在应用机械能守恒定律时仍然是用建立方程,在计算系统重力势能变化时用了等效方法。需要注意的是:研究对象仍然是整个水柱,到两个支管水面相平时,整个水柱中的每一小部分的速率都是相同的。【例6】如图所示,游乐列车由许多节车厢组成。列车全长为L,圆形轨道半径为R,(R远大于一节车厢的高度h和长度l,但L>2πR).已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动,在轨道的任何地方都不能脱轨。试问:在没有任何动力的情况下,列车在水平轨道上应具有多大初速度v0,才能使列车通过圆形轨道而运动到右边的水平轨道上?解析:当游乐车灌满整个圆形轨道时,游乐车的速度最小,设此时速度为v,游乐车的质量为m,则据机械能守恒定律得:要游乐车能通过圆形轨道,则必有v>0,所以有【例7】质量为0.02kg的小球,用细线拴着吊在沿直线行驶着的汽车顶棚上,在汽车距车站15m处开始刹车,在刹车过程中,拴球的细线与竖直方向夹角θ=37°保持不变,如图所示,汽车到车站恰好停住.求:(1)开始刹车时汽车的速度;(2)汽车在到站停住以后,拴小球细线的最大拉力。(取g=10m/s2,sin37°=0.6,cos37°=0.8)解析:(1)小球受力分析如图因为F合=mgtanθ=ma所以a=gtanθ=10×m/s2=7.5m/s2对汽车,由v02=2as得v0==m/s=15(m/s)(2)小球摆到最低点时,拉力最大,设为T,绳长设为l根据机械能守恒定律,有mg(l-lcosθ)=mv2在最低点,有T-mg=m,T=mg+2mg(1一cosθ),代人数值解得T=0.28N【例8】如图所示,一根长为,可绕轴在竖直平面内无摩擦转动的细杆,已知,质量相等的两个球分别固定在杆的端,由水平位置自由释放,求轻杆转到竖直位置时两球的速度?解析:球在同一杆上具有相同的角速度,,组成一个系统,系统重力势能的改变量等于动能的增加量,选取水平位置为零势能面,则:解得:【例9】小球在外力作用下,由静止开始从A点出发做匀加速直线运动,到B点时消除外力。然后,小球冲上竖直平面内半径为R的光滑半圆环,恰能维持在圆环上做圆周运动,到达最高点C后抛出,最后落回到原来的出发点A处,如图所示,试求小球在AB段运动的加速度为多大?解析:要题的物理过程可分三段:从A到孤匀加速直线运动过程;从B沿圆环运动到C的圆周运动,且注意恰能维持在圆环上做圆周运动,在最高点满足重力全部用来提供向心力;从C回到A的平抛运动。根据题意,在C点时,满足①从B到C过程,由机械能守恒定律得②由①、②式得从C回到A过程,满足③水平位移s=vt,④由③、④式可得s=2R从A到B过程,满足⑤∴【例10】如图所示,半径分别为R和r的甲、乙两个光滑的圆形轨道安置在同一竖直平面上,轨道之间有一条水平轨道CD相通,一小球以一定的速度先滑上甲轨道,通过动摩擦因数为μ的CD段,又滑上乙轨道,最后离开两圆轨道。若小球在两圆轨道的最高点对轨道压力都恰好为零,试求水平CD段的长度。解析:(1)小球在光滑圆轨道上滑行时,机械能守恒,设小球滑过C点时的速度为,通过甲环最高点速度为v′,根据小球对最高点压力为零,由圆周运动公式有①取轨道最低点为零势能点,由机械守恒定律②由①、②两式消去v′,可得同理可得小球滑过D点时的速度,设CD段的长度为l,对小球滑过CD段过程应用动能定理,将、代入,可得例析机械能守恒定律条件的七大误区机械能守恒定律是能量的转化与守恒定律这一自然界普遍遵循的规律,在机械运动范围内的具体表现,有其独特的研究对象和适用条件。对其成立条件的认识和理解,是运用这一定律的前提,本文从学生容易出错的几个误区谈谈自己的观点,给学生提供一个学习的平台。误区一:物体系的加速度等于g,则物体的机械能守恒。物体的加速度大于或小于g,则物体的机械能不守恒。图2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论