版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
统计学第三章数据分布特征的描述第一页,共六十二页,2022年,8月28日第一节总量指标一、总量指标的概念、作用
(一)概念又称绝对数。它是表明一定时间、地点和条件下某种社会经济现象总体规模或水平的统计指标。
(二)作用1.是反映总体基本状况,社会经济活动绝对效果的统计指标;2.是制定政策、编制计划的重要依据;3.是计算相对指标、平均指标和各种分析指标的基础。
统计学课程建设小组第二页,共六十二页,2022年,8月28日二、总量指标的种类
(一)按所反映的内容不同进行分类1.单位总量2.标志总量(二)按反映的时间状况进行分类1.时点指标2.时期指标时期指标与时点指标的区别:(三)按计量单位的不同进行分类1.实物量指标2.价值量指标3.劳动量指标统计学课程建设小组第三页,共六十二页,2022年,8月28日通过下表:1.区分总体单位总量与总体标志总量;2.区分时期指标与时点指标。10005000200001000合计200500300100020002000800050007000300250450纺织局化工局机械局工业增加值(万元)固定资产增加额(万元)职工人数(人)企业数(个)单位名称总体单位总量时点指标总体标志总量时期指标统计学课程建设小组第四页,共六十二页,2022年,8月28日第二节相对指标一、相对指标的概念、意义及表现形式(一)概念
又称相对数。它是两个相互联系的指标对比的结果,用来反映现象之间的数量对比关系或联系程度。
(二)意义1.为人们深入认识事物发展的质量与状况提供客观依据;2.可以使不能直接对比的现象找到可以对比的基础,进行更为有效的分析。统计学课程建设小组第五页,共六十二页,2022年,8月28日(三)表现形式1.有名数2.无名数:常以系数、倍数、成数、百分数、千分数、翻番数表示。二、相对指标的种类及计算方法(一)结构相对指标
总体某部分的数值结构相对指标=—————————×100%总体的全部数值
计算结果用的百分数或成数表示,各组比重总和等于100%或1。统计学课程建设小组第六页,共六十二页,2022年,8月28日(二)比例相对指标
总体中某一部分的数值比例相对指标=———————————总体中另一部分的数值例:人口性别比:106.74:100(五普);106.3:100(1%,男性为67309万人,女性为63319万人)(三)比较相对指标
甲总体某指标值比较相对指标=—————————×100%乙总体同类指标值统计学课程建设小组第七页,共六十二页,2022年,8月28日(四)强度相对指标
某一总量指标数值强度相对指标=—————————————另一有联系而性质不同的总量指标数值如:2005年一季度城镇居民人均可支配收入为2938元无名数:出生率、伤亡事故率可分两种(分子分母所属时间不一致)有名数:人/Km2
(分子分母所属时间一致)统计学课程建设小组第八页,共六十二页,2022年,8月28日(五)动态相对指标
报告期水平发展速度=——————×100%基期水平增长速度=发展速度-1如:2005年一季度城镇居民人均可支配收入是2004年同期的111.3%,增长11.3%。(六)计划完成程度相对指标
实际完成数计划完成相对指标=——————×100%
计划任务数统计学课程建设小组第九页,共六十二页,2022年,8月28日它有三种形式:1.如果实际数与计划数都为绝对数时:2.如果实际数与计划数都为相对数时:
(1)若计划完成指标以100%为最低限规定的,属于越高越好的计划完成相对指标:
1+实际增长%计划完成相对指标=———————×100%1+计划增长%例:某企业2005年计划销售收入提高2%,而实际提高了2.5%。统计学课程建设小组第十页,共六十二页,2022年,8月28日(2)若计划完成指标以100%为最高限规定的,属于越低越好的计划完成相对指标:1-
实际降低%计划完成相对指标=———————×100%1-
计划降低%例:某企业本年计划降低管理费用5%,而实际降低6%。3.如果实际数与计划数都为平均数时实际平均水平计划完成相对指标=———————×100%
计划平均水平例:本年度计划平均工资为1000元/人.月,实际为1200元/人.月。统计学课程建设小组第十一页,共六十二页,2022年,8月28日A.水平法:若计划指标是按整个计划期的末年应达到的水平来规定的,用水平法。
公式为:计划完成相对数=(计划期末年实际达到的水平÷计划中规定的末年水平)×100%
提前完成计划的时间=(计划期月数-实际完成月数)+超额完成计划数÷(达标月(季)日均产量-上年同月(季)日均产量)4.中长期计划完成相对数的计算方法统计学课程建设小组第十二页,共六十二页,2022年,8月28日例:某种产品按五年计划规定,最后一年产量应达200万吨,计划执行情况如下:
时间第一年第二年第三年上半年第三年下半年第四年一季度第四年二季度第四年三季度第四年四季度第五年一季度第五年二季度第五年三季度第五年四季度5年合计产量11012266743738424953586572775统计学课程建设小组第十三页,共六十二页,2022年,8月28日要求:1.计算该产品计划完成程度
2.计算提前完成计划的时间
解:
1.产量计划完成程度=(53+58+65+72)÷200=124%
2.从第四年第三季度至第五年第二季度产量之和:42+49+53+58=202万吨
提前完成计划时间=(60-54)+2÷[(58-38)÷90]=6个月零9天统计学课程建设小组第十四页,共六十二页,2022年,8月28日B.累计法:若计划指标是按整个计划期内累计完成量来规定的,宜用累计法计算。公式为:
计划完成相对数=(计划期间累计完成数÷同期计划规定的累计数)×100%
提前完成计划时间=(计划期月数-实际完成月数)+超额完成计划数÷平均每日计划数统计学课程建设小组第十五页,共六十二页,2022年,8月28日[例]某市某五年计划规定整个计划期间基建投资总额达到500亿元,实际执行情况如下:时间第1年第2年第3年第4年第5年5年合计一季度二季度三季度四季度投资额140135708040221820525试计算该市5年基建投资额计划完成相对数和提前完成时间。解:1.计划完成相对数=525÷500=105%2.从第一年的第一季度起至第5年的第三季度投资额之和505亿元,比计划数500亿元多5亿元,则:提前完成计划时间=(60-57)+5÷[500/(365×5)]=3个月零18天统计学课程建设小组第十六页,共六十二页,2022年,8月28日
例题:想一想可以计算哪几种相对指标?1990年1982年11433358904554291016545235249302人口总数其中:男女年份又知我国国土面积为960万平方公里。结构相对指标比例相对指标动态相对指标强度相对指标比较相对指标统计学课程建设小组第十七页,共六十二页,2022年,8月28日第三节平均指标一、平均指标的意义(一)概念又称统计平均数,是反映同质总体各单位某一数量标志在一定的时间、地点条件下所达到的一般水平的一个综合指标。
(二)平均指标的作用1.统计平均数可以反映变量分布的集中趋势;2.可用于同类现象在不同空间、不同时间条件下的对比;
3.可以分析现象之间的依存关系;4.作为评价事物和问题决策的数量标准或参考。
统计学课程建设小组第十八页,共六十二页,2022年,8月28日二、平均指标的种类
算术平均数数值平均数调和平均数
平均指标
几何平均数
众数
位置平均数
中位数
统计学课程建设小组第十九页,共六十二页,2022年,8月28日三、数值平均数(一)算术平均数
1.概念算术平均数是总体各单位某一数量标志的平均数。是集中趋势的最主要测度值。是计算社会经济现象平均指标最常用方法和最基本形式。其基本计算公式为:标志总量算术平均数=—————单位总量
统计学课程建设小组第二十页,共六十二页,2022年,8月28日
2.种类(1)简单算术平均数它是依据现象总体的各单位某一标志的标志值简单加总计算的算术平均数。适合于未分组的原始数据。其计算公式为:(2)加权算术平均数它适合于计算分组数列的平均数。其计算公式为:
统计学课程建设小组第二十一页,共六十二页,2022年,8月28日
从以上公式可以得出,第i组标志值所出现的次数fi在总次数∑fi中所占的比重影响了平均数的大小。fi/∑fi越大,平均数就向fi所对应的标志值Xi逼近。可见fi起了权衡轻重的作用,故f称为权数。
某企业工人按日产量分组资料如下:日产量(件)
工人人数(人)(x)(f)(f/∑f)15107162013173020185033194027合计150100要求:根据资料计算工人的平均日产量。例1根据单项式数列计算算术平均数统计学课程建设小组第二十二页,共六十二页,2022年,8月28日解法一:解法二统计学课程建设小组第二十三页,共六十二页,2022年,8月28日例2根据组距数列计算算术平均数例:某企业职工按工资分组资料如下:工资(元)职工人数(人)xff/∑f500以下5016.7500—6007023.3600—70012040.0700以上6020.0合计300100.0要求:根据资料计算全部职工的平均工资。统计学课程建设小组第二十四页,共六十二页,2022年,8月28日例3权数的选择当分组的标志为相对数或平均数时,经常会遇到选择哪一个条件为权数的问题。如下例:计划完成程度企业数计划产值(%)(个)(万元)80—9055090—1001080100—110120200110—1203070合计165400要求:计算全部企业的平均计划完成程度。统计学课程建设小组第二十五页,共六十二页,2022年,8月28日选择权数的原则:1.变量与权数的乘积必须有实际经济意义。2.依据相对数或平均数本身的计算方法来选择权数。根据原则本题应选计划产值为权数,计算如下:平均计划完成程度:统计学课程建设小组第二十六页,共六十二页,2022年,8月28日(3)加权与简单算术平均数之间的关系权数起作用必须有两个条件:1.各组标志值必须有差异。
2.各组的次数或比重必须有差异。3.算术平均数的数学性质
(1)各变量值与其均值的离差之和为零;(2)各变量值与其均值的离差平方和最小。统计学课程建设小组第二十七页,共六十二页,2022年,8月28日(二)调和平均数
1.概念调和平均数:是标志值倒数的算术平均数的倒数。它是根据各个变量值的倒数计算的,所以又称“倒数平均数”。
2.种类简单调和平均数计算方法不同,可以分为加权调和平均数
统计学课程建设小组第二十八页,共六十二页,2022年,8月28日(1)简单调和平均数(2)加权调和平均数
例1:某工业局下属各企业按产值计划完成程度分组资料如下:计算该工业局产值平均计划完成程度?解:计划完成程度企业数实际产值(%)(个)(万元)80—9055090—1001080100—110120200110—1203070合计165400xxm∑m∑==400394=101.52%统计学课程建设小组第二十九页,共六十二页,2022年,8月28日例2:甲、乙两个企业的劳动生产率、职工人数及产值的有关资料如下表:试分别计算甲、乙两个企业的平均劳动生产率?
1120(元/人);
1140(元/人)结论:??劳率(元/人)甲企业人数(人)乙企业产值(元)800-1000
2090001000-1200
5066000
1200以上
3039000
合计100114000
统计学课程建设小组第三十页,共六十二页,2022年,8月28日(三)几何平均数
1.概念
变量中每一变量值的连乘积的项数次方根。
2.种类简单几何平均数计算方法不同,可以分为加权几何平均数思考:适用条件?统计学课程建设小组第三十一页,共六十二页,2022年,8月28日四、位置平均数(一)众数
1.概念总体中出现次数最多的变量值。以M0表示。2.确定众数的方法(1)根据未分组、单项数列确定众数(2)根据组距数列确定众数首先:确定数列的众数值其次:利用与众数组相邻的两个组的频数,近似计算众数值。统计学课程建设小组第三十二页,共六十二页,2022年,8月28日例:某班成绩:求:众数?3.计算众数的条件
思考?成绩(分)人数(人)60以下1060—701570—806080—901090以上5统计学课程建设小组第三十三页,共六十二页,2022年,8月28日(二)中位数
1.概念是标志值按大小顺序排列,处在中间位置的标志值。以Me表示。2.确定中位数的方法(1)由未经分组资料确定中位数
步骤:①将资料按大小顺序排列②计算中位数的位次:③确定中位数+12n统计学课程建设小组第三十四页,共六十二页,2022年,8月28日(2)由单项式确定中位数(3)由组距数列资料确定中位数
步骤:①计算数列的中间位置点:②计算累计次数找出中位数所在的组③确定中位数f+12∑步骤:①计算数列的中间位置点:②计算累计次数,找出中位数所在的组③用公式计算中位数2∑f统计学课程建设小组第三十五页,共六十二页,2022年,8月28日例:见上(三)众数、中位数的性质不受极端变量值的影响统计学课程建设小组第三十六页,共六十二页,2022年,8月28日(三)四分位数1.排序后处于25%和75%位置上的值下四分位数(QL):位于1/4位置的数上四分位数(QU):位于3/4位置的数分位数不受极端值的影响QLQMQU25%25%25%25%四分位数(位置的确定)统计学课程建设小组第三十七页,共六十二页,2022年,8月28日解:QL位置=(300+1)/4=75QU位置=(3×300)/4=225从累计频数看,QL在“不满意”这一组别中;QU在“一般”这一组四分位数为:QL
=不满意
QU
=一般例:甲城市家庭对住房状况评价的频数分布回答类别甲城市户数(户)累计频数非常不满意不满意一般满意非常满意2410893453024132225270300合计300—统计学课程建设小组第三十八页,共六十二页,2022年,8月28日【例】:9个家庭的人均月收入数据原始数据15007507801080850960200012501630排序:75078085096010801250150016302000位置:123456789统计学课程建设小组第三十九页,共六十二页,2022年,8月28日【例】:10个家庭的人均月收入数据排序:66075078085096010801250150016302000位置:12345678910
统计学课程建设小组第四十页,共六十二页,2022年,8月28日五、众数、中位数和算术平均数的比较1.从分布角度看:对于同一组数据,如果数据具有单一众数,且分布是对称的,则有M0=Me=;如果数据是左偏分布,则<Me<M0;如果数据是右偏分布,则M0<Me<。2.从数值上的关系看:当数据分布的偏斜程度不很大时,众数在数轴上离算术平均数最远。3.从运用角度看:当数据呈对称分布或接近对称分布时,应选择算术平均数作集中趋势代表值;当数据为偏态分布,应选择众数或中位数作为代表值。
统计学课程建设小组第四十一页,共六十二页,2022年,8月28日对称分布
均值=中位数=
众数左偏分布均值
中位数
众数右偏分布众数
中位数均值统计学课程建设小组第四十二页,共六十二页,2022年,8月28日第四节变异指标一、变异指标的含义(一)概念又称“标志变动度”。是反映总体各单位标志值的变异范围和差异程度的综合指标。
(二)作用
1.反映总体各单位标志值分布的离中趋势;2.说明平均指标的代表性程度;
3.说明现象变动的均匀性或稳定性程度。
统计学课程建设小组第四十三页,共六十二页,2022年,8月28日二、变异指标的种类及计算(一)极差
也称全距。是总体各单位标志值中最大值与最小值之差。以R表示。
R=max(Xi)-min(Xi)
对于组距分组数据,全距可近似表示为:R=最大组上限-最小组下限
通常用于检查产品质量的稳定性及进行质量控制。但在实际中运用不广泛。
统计学课程建设小组第四十四页,共六十二页,2022年,8月28日(二)平均差1.平均差的定义它是各单位标志值对其平均数的离差绝对值的平均数,常用A.D表示。2.平均差的计算公式(1)简单平均差
(2)加权平均差例:教材P83例4-16注意:应用范围受到限制。
统计学课程建设小组第四十五页,共六十二页,2022年,8月28日(三)标准差1.概念
方差:它是各个总体单位的某一标志值与其算术平均值的离差的平方的算术平均数。以σ2表示。
标准差:又称均方差。方差的平方根。计算步骤:(1)计算每个变量值与算术平均数的离差;(2)把各项离差平方;(3)计算离差平方和;(4)计算离差平方的算术平均数,即方差。(5)将方差开方,其正根就是标准差。
统计学课程建设小组第四十六页,共六十二页,2022年,8月28日2.计算公式(1)简单标准差、方差
例:某企业一个班组10人的日产量如下:(件)20、15、25、18、30、24、36、22、20、10求:该班组10人的标准差、方差?统计学课程建设小组第四十七页,共六十二页,2022年,8月28日(2)加权标准差、方差例:教材P84例4-17统计学课程建设小组第四十八页,共六十二页,2022年,8月28日3.是非标志的均值及标准差是非标志:其值仅表现为具有某种特征或不具有某种特征两种情况的标志称为是非标志,也称交替标志。其中:N表示总体单位总数;N1表示具有某种标志的总体单位数;N0表示不具有某种标志的总体单位数统计学课程建设小组第四十九页,共六十二页,2022年,8月28日
3.标准化值
在对多个具有不同量纲的指标进行处理时,常常要对各指标进行标准化处理,以便于对比。此外,标准化值也给出了一组数据中各数据的相对位置。比如某个数值的标准化值为1.5,则该数值是在高于算术平均值1.5倍标准差的位置。通常一组数据中高于或低于算术平均数3倍标准差的数值是很少的。也就是说,在算术平均值加减3个标准差的范围内几乎包含了全部数据。统计学课程建设小组第五十页,共六十二页,2022年,8月28日(四)离散系数1.概念又叫变异系数,指变异指标与算术平均数之比的相对变异指标。平均水平不同或计量单位不同的不同总体离散程度测度。2.计算公式统计学课程建设小组第五十一页,共六十二页,2022年,8月28日例:两个不同品种的水稻产量资料如下:
要求:计算有关指标比较两个品种水稻单产的稳定性?
亩产(公斤/亩)播种面积(亩)甲品种乙品种300-4004010400-5007090500-6007560600以上2040合计205200统计学课程建设小组第五十二页,共六十二页,2022年,8月28日(五)偏度与峰度
1.偏度(1)偏度的概念反映总体次数分布偏斜程度的指标偏度的种类:右偏分布(正偏)左偏分布(负偏)
左偏分布均值
中位数
众数对称分布
均值=中位数=
众数右偏分布众数
中位数均值统计学课程建设小组第五十三页,共六十二页,2022年,8月28日(2)偏度的测定方法:算术平均数与众数比较法利用算术平均数、中位数和众数的关系来测定偏度。偏度=算术平均数-众数若偏度>0,则右偏;若偏度<0,则左偏左偏分布均值
中位数
众数对称分布
均值=中位数=
众数右偏分布众数
中位数均值统计学课程建设小组第五十四页,共六十二页,2022年,8月28日偏态系数--用于比较不同的分布数列偏态系数SKp公式为:SKp越大,则偏斜程度越大。方法:偏态系数为:偏态系数=0为对称分布偏态系数>0为右偏分布偏态系数<0为左偏分布统计学课程建设小组第五十五页,共六十二页,2022年,8月28日2.峰度描述对称分布曲线峰顶尖峭程度的指标正态峰度峰度的种类
尖顶峰度 平顶峰度扁平分布尖峰分布标准正态分布统计学课程建设小组第五十六页,共六十二页,2022年,8月28日峰度的测定方法
其中:=3标准正态曲线3平顶峰曲线,离散程度大3尖顶峰曲线,离散程度小1.8U形曲线1.8一条水平线统计学课程建设小组第五十七页,共六十二页,2022年,8月28日本章练习一、填空题
1.总量指标按其反映的内容不同可分为__和__。2.某市2005年GDP为2280亿元,从反映总体的内容看,该指标是___;从反映现象的时间状况看,该
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银行新入行客户经理工作总结
- 实习生工作总结15篇
- 软程序员辞职报告汇编八篇
- 教师师德工作计划范文
- 买卖合同范文集锦9篇
- 新生必bei-大学生存法则(重庆工商职业学院)知到智慧树答案
- 冀教版三年级上册 lesson 14 my body
- 《战略管理会计 》课件
- 《稿继续教育》课件
- 大班欢乐颂教案反思4篇
- 高性能计算云(HPC Clound)服务白皮书 2022
- 青岛科技大学互换性与技术测量期末复习题
- 高级教师职称面试讲课答辩题目及答案(分五类共60题)
- 宣传品制作售后服务
- 《皇帝的新装》比赛优质课一等奖课件
- LED洗墙灯CREE管工艺技术文件
- 认知觉醒:开启自我改变的原动力
- Python语言与经济大数据分析知到章节答案智慧树2023年上海财经大学
- 《九加几》的观评课
- 护理查房慢性乙型病毒性肝炎护理查房
- 在实践中认识针刺麻醉原理
评论
0/150
提交评论