版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《鸽巢问题》教学设计教学内容审定人教版六年级下册数学第五单元《数学广角鸽巢问题》,也就是原实验教材《抽屉原理》。设计理念《鸽巢问题》既鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。首先,用具体的操作,将抽象变为直观。“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。再者,适当把握教学要求。我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。教材分析《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“鸽巢问题”。通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。二是假设法,用平均分的方法直接考虑“至少”的情况。通过前一个例题的两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。第二个例题是在例1的基础上说明:只要物体数比鸽巢数多,总有一个鸽巢里至少放进(商+1)个物体。因此我认为例2的目的是使学生进一步理解“尽量平均分”,并能用有余数的除法算式表示思维的过程。学情分析可能有一部分学生已经了解了鸽巢问题,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。还有部分学生完全没有接触,所以他们可能会认为至少的情况就应该是“1”。教学目标1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。教学重点经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。教学难点理解“鸽巢问题”,找出“鸽巢问题”中的“鸽巢”是什么?“鸽巢”有几个?并对一些简单实际问题加以“模型化”。教学准备:多媒体课件、投影、前置性小研究。教学过程:一、课前三分钟(魔术激趣,初步体验。)同学们喜欢玩扑克牌吗?今天的课前三分钟我给大家表演一个扑克牌魔术,这个魔术需要一个同学来配合,谁愿意?(邀请学生并介绍):这是一副完整的扑克牌,共54张,取出大王、小王,还剩52张,有4种花色,每种花色各有13张。请你在这些牌中任意抽取5张牌。记住,不要让我看见你抽的牌,我敢肯定你手里的5张牌至少有两张牌的花色是一样的,大家相信吗?好,见证奇迹的时刻到了(学生打开牌让大家看)。还有同学想试一试吗?(再次抽牌,展示)我的课前三分钟到此结束,谢谢大家。[设计意图:利用扑克牌魔术,激发学习兴趣,使学生积极投入到后面问题的研究中。]师导入:刚才xx同学为什么能做出准确的判断呢?因为这个有趣的魔术中蕴含着一个数学原理,这节课我们就一起来研究这个原理。二、前置性小研究的交流、讨论:请同学们拿出前置性小研究,先在小组内交流讨论,一会儿,我们请小组来汇报。前置性小研究:认真阅读教材68-69页,完成下列问题。例1:把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。有几种放法?请你动手摆一摆,画一画,说一说。我的思路:我的发现:我的例子:三、前置性小研究汇报。1、具体操作,感知规律教学例1:把4支铅笔放进3个笔筒中,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?(1)学生汇报结果(4,0,0)(3,1,0)(2,2,0)(2,1,1)(2)师生交流摆放的结果(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)[设计意图:鸽巢问题对于学生来说,比较抽象,特别是“不管怎么放,总有一个筒里至少放进了2支笔。”这句话的理解。所以通过具体的操作,枚举所有的情况后,引导学生直接关注到每种分法中数量最多的筒,理解“总有一个筒里至少放进了2支笔”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。]质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?2.假设法,用“平均分”来演绎“鸽巢问题”。1、思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?学生思考——同桌交流——汇报2、汇报想法预设生1:我们发现如果每个筒里放1支笔,最多放3支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。3、学生操作演示分法,明确这种分法其实就是“平均分”。[设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。]四、探究归纳,形成规律1、课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。[设计意图:引导学生用平均分思想,并能用有余数的除法算式表示思维的过程。]根据学生回答板书:5÷2=2……1(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)根据学生回答,师边板书:至少数=商+余数?至少数=商+1?2、师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)7÷5=1……28÷5=1……39÷5=1……4观察板书,同学们有什么发现吗?得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。板书:至少数=商+1[设计意图:对规律的认识是循序渐进的。在初次发现规律的基础上,从“至少2支”得到“至少商+余数”个,再到得到“商+1”的结论。]3、小结:引出“鸽巢问题”师过渡语:同学们的这一发现,称为“鸽巢问题”,又称“抽屉原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”。这一原理在解决实际问题中有着广泛的应用。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。五、运用规律解决生活中的问题课件出示习题.:1、三个小朋友同行,其中必有几个小朋友性别相同?2、六年一班共有学生63人,请你证明至少有两名同学出生在同一周。3.从校园中任意找来13名同学,至少有两个人属相相同。[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]六、课堂小结师:咱们今天探究出了什么原理?生:鸽巢原理狄里克雷原理抽屉原理。师:现在,你能用这一原理来解释课前三分钟扑克牌魔术了吗?生:5张牌相当于鸽子,4种花色相当于鸽巢,总是至少有2张牌是同一花色的。七、拓展延伸:同学们说的真好!老师也想给你们变个魔术,这回请一个同学任意抽出14张,我知道现在你手里的14张牌中至少有一对儿!谁能解开这个魔术?生:14张牌相当于鸽子,每种花色的13张牌相当于鸽巢,总是至少有2张牌是一对儿。八、板书设计:鸽巢问题1、枚举法2、假设法3、计算法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年项目管理与技术顾问协议
- 2024年行政申诉状范本汇编与撰写方法解析3篇
- 2024年高等教育教师职务聘用协议电子版版B版
- 2024聘用货车司机及运输安全管理合同范本3篇
- 2024年消防应急照明安装合同6篇
- 血常规报告单-一文读懂!(超全版)
- 2025年ktv房间租赁及节假日特别优惠合同3篇
- 2025年度企业财务审计与税务筹划代理服务合同2篇
- 一元二次不等式教案5篇
- 仰韶文化中彩陶纹饰常出现鱼鸟蛙等构图分析审美文化内涵
- 零碳智慧园区解决方案
- 2025年林权抵押合同范本
- 2024年北师大版四年级数学上学期学业水平测试 期末卷(含答案)
- 2024年高考物理一轮复习讲义(新人教版):第七章动量守恒定律
- 人教版八年级上学期物理期末复习(压轴60题40大考点)
- 企业环保知识培训课件
- 浙江省宁波市慈溪市2023-2024学年高三上学期语文期末测试试卷
- 暨南大学《微观经济学》2023-2024学年第一学期期末试卷
- 草学类专业生涯发展展示
- 法理学课件马工程
- 《玉米种植技术》课件
评论
0/150
提交评论