钠电池行业调研报告分析_第1页
钠电池行业调研报告分析_第2页
钠电池行业调研报告分析_第3页
钠电池行业调研报告分析_第4页
钠电池行业调研报告分析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

钠电池行业调研报告

钠离子电池在资源丰富度、成本等方面具有一定优势。一是钠元素储备更丰富,钠是地壳中储量第六丰富的元素,地理分布均匀,成本低廉;而锂资源在地壳中储量仅为0.002%,不到钠的千分之一,且全球分布具有地域性。二是钠离子化合物可获取性强,价格稳定且低廉。此外,在低电压下铝不会和钠合金化,因此钠离子电池负极可使用铝集流体而不必像锂电池使用铜集流体,从而降低电池的成本和重量。三是钠元素和锂元素有相似的物理化学特性及储存机制,钠离子电池有相对稳定的电化学性能和安全性。全球范围内,我国锂资源储量有限全球可用锂资源稀缺且分布不均,价格寡头垄断,易受地缘性影响。(一)全球可用锂资源不足锂是自然界密度最小的金属,具有极强的电化学活性,具有储能功能,其在地壳中含量仅约0.0065%,丰度居第二十七位,从资源总量来看其实并不稀缺,但受开采条件和提锂技术的影响,许多估算的资源量无法转化为储量,如全球已知最大的乌尤尼盐湖(Uyuni)锂矿床由于没有经济可行的锂盐提取方法,其中大量的锂资源量无法计入储量。(二)全球锂资源分布不均、寡头垄断全球锂资源分布高度集中,形成寡头垄断局面,2020年,73%锂资源分布在北美洲和南美洲,其他地区如大洋洲(8%)、亚洲(7%)、欧洲(7%)和非洲(5%)则分布较少。钠电池正极材料-普鲁士蓝类化合物理论容量高,成本低,间隙水问题需解决普鲁士蓝类正极材料(AxMa[Mb(CN)6]1−y•□y•nH2O(0≤x≤2,0≤y<1),其中A为碱金属离子;Ma和Mb为不同配位环境的过渡金属离子;□为[Mb(CN)6]空位)具有较高的工作电势,较为稳定的三维框架结构,较长的循环寿命,较低的制造成本,其中利用M3+/M2+和Fe3+/Fe2+氧化还原电对,最多可以实现两个Na+的有序脱出/嵌入,对应理论比容量达到170mAh/g(以NaFe[Fe(CN)6]为例)。普鲁士蓝的苦恼:空位和间隙水导致电化学性能恶化。普鲁士蓝类化合物在合成过程中易形成[Fe(CN)6]4-空位和间隙水,形成的空位被配位的H2O分子占据后不仅会降低材料的初始钠含量,而且会导致容量在循环过程中快速下降,恶化电化学性能,阻碍实际应用。锂电池价格上涨,推动钠离子电池需求量的增加钠离子电池的研发起步较早,产业化应用的速度不及锂离子电池,但近年来学术研究和产业应用的热度持续上升。在1967年,高温钠硫电池出现是钠离子电池发展的萌芽时期,到1979年法国的Armand提出了摇椅式电池的概念后,由于锂离子电池体系中应用较为广泛的石墨负极储钠能力欠缺,对钠离子电池的研究几乎停滞。直至2000年加拿大Dahn等发现硬碳负极具备优异的可逆储钠能力,学界才继续推进。到2010年,随锂离子电池研究和产业链建设趋于成熟,以及对锂资源的担忧,钠离子电池的研究和产业化进程,进入复兴时期。直至2021年7月,宁德时代发布第一代钠离子电池,宣布计划2023年形成基本产业链,叠加锂价在2021年底-2022年年初快速上涨,引发全产业链对互补、替代方案钠离子电池的高度重视,涌现数十家推动钠离子电池及原材料量产的企业。磷酸锂是一种锂离子电池电极材料,主要用于锂离子电池。近年来由于我国电动汽车产量快速增长,导致锂离子电池产能的提升,从而出现碳酸锂价格飞涨的局面。数据显示,我国磷酸锂价格在2021年年末到2022年年初价格增长迅速,导致锂离子电池原材料成本较高,价格上涨趋势明显,将使其在大规模储能中的应用受到限制。同时,锂元素的地壳丰度只有0.0065%,我国锂资源十分短缺,大部分依赖于进口,而钠元素的地壳丰度为2.74%,地域分布广泛,我国的钠资源较锂资源相对丰富,成本低廉。为了防止国外对锂资源的垄断,我国将大力发展钠离子电池,以替代锂离子电池,在一定程度上缓解由于锂资源短缺引发的储能电池发展受限问题。因为能量密度的短板,钠离子电池的应用尚出现在中高端的电动汽车上,在微型电动车及两轮电动车上将率先应用。数据显示,近年来,随着经济的快速发展,人们的收入水平的提高,两轮电动车的产销量整体呈现上涨趋势,其中产量从2017年的3113万辆增加到2021年的5443万辆,销售量从2017年的2943万辆增加到2021年的4100万辆。由于两轮电动车产品价格较低,适合中、小型城市和县乡市场的用户,未来市场空间广阔,有利于促进钠离子电池需求量的增长。当前电动两轮车、A00级电动车受锂离子电池价格上涨的影响,选择性价比较高的钠离子电池进行替代,随着电动两轮车、A00级电动车的不断发展,钠离子电池的需求量向好发展,同时,钠离子电池可利用廉价的钠盐取代锂盐作为电池关键原料,已经成为新一代储能电池研究的热点,在快速发展的储能领域,钠离子电池有望成为重要的技术路线之一。在2017-2021年中,我国钠离子电池供给量和需求量呈现逐年上升的趋势,其市场价格走势不断下降,从2017年的7.14亿元/GWh下降到2021年的6.66亿元/GWh。目前,我国钠离子电池处于发展前期,还未形成基本的产业链。从专利申请量来看,在2017-2021年间,中国钠离子电池专利申请量整体上处于上升趋势,其中2020年受疫情影响,钠离子电池的申请量有小幅下降,较2019年减少33项,根据IP管家统计,2022年1-11月的申请量达到了1379项,可见,钠离子电池逐步受到各方面的重视,未来市场占有率也将逐步提升。国内锂资源开采成本较高,中长期价格有望较高我国锂盐对外依存度近八成,或将构成潜在威胁。我国锂资源供应对能源和产业安全的威胁不容忽视。我国的锂资源储量总量并不稀缺,从2020年数据来看,我国的锂资源储量总量全球占比6.31%,紧随智利、澳大利亚、阿根廷,位列第四,但现实是我国80%的锂资源供应依赖进口(澳洲锂矿和南美盐湖等地),是全球锂资源第一进口国。原因在于大部分可开采资源位于青海和西藏盐湖,但青海盐湖锂镁分离困难、西藏地理环境恶劣,因此电池级碳酸锂的有效产能不足。加之新能源汽车和储能产业发展势头迅猛,我国锂资源供给与需求量形成强烈对比。产量方面,2022年全国锂离子电池产量达750GWh,同比增长超过130%,其中储能型锂电产量突破100GWh。锂电一家独大或将构成我国潜在的威胁,发展替代方案对于保障我国能源供应和产业安全具有重要意义。钠电池市场空间:四轮车-2025年有望达到48.45GWh钠电池有机会渗透的动力电池市场主要包括A00级、A0级以及A级三种电动车。具体来看,钠电池可以满足续航里程在400公里以下的新能源汽车车型的基本需求,400公里以下的新能源汽车车型主要包括A00和A0级别电动车车型,未来钠电池能满足的续航里程有望进一步提升至500公里,能够覆盖的车型则将进一步延伸至A型级别电动车。由于上游原材料尤其是锂价的持续高位,电动车领域受到持续性冲击。钠离子电池凭借成本优势,在产品标准化程度提高后,有望切入A00级、A0级以及A级电动车领域。预计2023-2025年钠电池在A00级、A0级以及A级电动车市场的渗透率将逐年升高,2025年分别达到30%、20%、15%,2025年对钠离子电池需求总量有望达到48.45Gwh。中国钠离子电池市场前瞻钠离子电池主要分为四种,其中钠硫电池和钠-氯化钠电池为高温钠离子电池,水系钠离子电池和溶剂系钠离子电池为常温钠离子电池。目前已开始小批量应用的主要是常温钠离子电池,尤其是以溶剂系钠离子电池。在产业链方面,上游的正极和负极以及电解液添加剂都需要培育新的供应链,在隔膜、集流体、电解液溶质以及生产线可以与锂离子电池共用;而在下游,主要取代铅酸电池、锰酸锂电池、磷酸铁锂电池的市场,主要应用领域为电动二轮车、低速车、储能、电动船舶以及电动工具。造成钠离子电池目前没有大规模应用的主要原因有:钠离子电池现阶段相对于锂离子电池并没有明显的价格优势。钠离子电池相对于锂离子电池(磷酸铁锂电池和锰酸锂电池)存在能量密度劣势。由于钠离子电池产业链不够成熟,钠离子电池的配方没有经过足够多的迭代,性能潜力挖掘不够,潜在的性能缺陷较多。由于用户的使用惯性和路径依赖,用户更愿意接受成熟度更高的锂离子电池。各细分领域,钠离子电池并没有表现出不可替代的性能。钠离子电池没有大规模应用,导致钠离子电池上游供应链并不成熟,钠离子电池没有获得明显的成本优势。从废旧锂电池回收退下来的梯次利用锂电池价格低廉,并且供应量不断增加,进一步削减了钠离子电池的市场可能性。目前国内主流的最为成熟的技术路线为:正极为钠过度金属氧化物,过度金属为铜铁锰或镍铁锰,负极为硬碳或无烟煤软碳,电解液溶质为六氟磷酸钠,电解液溶剂与目前锂离子电池溶剂相同,正负极集流体均为铝箔。钠离子电池的主要竞争产品为锰酸锂电池、磷酸铁锂电池、铅酸电池以及梯次利用锂电池。通过计算钠离子正负极能量密度差异,可以得出,在相同技术条件下,钠离子的能量密度约为锰酸锂电池和磷酸铁锂电池能量密度的0.7-0.8倍。在对比钠离子电池与锰酸锂电池及磷酸铁锂电池的性能后,高工产研锂电研究所认为钠离子电池未来的应用领域有望主要集中在电动二轮车市场、家庭储能、低速车以及备电等领域。于加快推动新型储能发展的指导意见(发改能源规〔2021〕1051号)2021年四月下旬,国家发展改革委、国家能源局发布了《关于加快推动新型储能发展的指导意见》,主要目标是到2025年实现新型储能从商业化初期向规模化发展转变。新型储能技术创新能力显著提高,核心技术装备自主可控水平大幅提升,在高安全、低成本、高可靠、长寿命等方面取得长足进步,标准体系基本完善,产业体系日趋完备,市场环境和商业模式基本成熟,装机规模达3000万千瓦以上。新型储能在推动能源领域碳达峰碳中和过程中发挥显著作用。到2030年,实现新型储能全面市场化发展。新型储能核心技术装备自主可控,技术创新和产业水平稳居全球前列,标准体系、市场机制、商业模式成熟健全,与电力系统各环节深度融合发展,装机规模基本满足新型电力系统相应需求。新型储能成为能源领域碳达峰碳中和的关键支撑之一。钠离子电池行业发展历程与锂离子电池工作原理相似,钠离子电池是主要依靠钠离子在正极和负极之间移动来工作,以钠离子嵌入化合物作为正极材料的一种可二次充电的电化学钠离子电池。钠离子和锂离子电池研究均起始于20世纪70年代,由于储能需求日益增长,低成本储能电池技术的需求愈发紧迫,钠离子电池研究在近十年内突飞猛进。以NaCuFeMnO/软碳体系的钠离子电池较磷酸铁锂/石墨体系的锂离子电池材料成本更低,可降低30-40%。从成本材料结构来看,锂离子电池正极材料成本占比最高,为43%,而钠离子电池的正极材料成本仅为26%。钠离子电池的制造和锂离子电池的制造完全兼容,可以沿用锂离子电池设备,目前钠电池产业链主要变化在正极材料。正极路线主要有:过渡金属氧化物、聚阴离子型化合物、普鲁士化合物和非晶态材料四种路线。过渡金属氧化物是目前最受欢迎的正极材料如磷酸铁钠、锰酸铁钠、钛锰酸钠等,中科海钠、钠创新能源和Faradion是该路线的主要公司;普鲁士类料,具有较妤的电化学性能,具备成本低、稳定性好等优点。但在制备过程中存在配位水含量难以控制等问题,宁徳时代、星空钠电和NatronEnergy是该路线的主要公司;聚阴离子型材料,稳定性和循环寿命好,化合物族类具有多样性,但是较低的本征电子电导率,限制了这类材料的实际应用。钠电池负极材料:硬碳高性能与软碳低成本,鱼和熊掌不可兼得硬碳比容量占优,软碳经济性占优,目前硬碳是主流。硬碳内部碳微晶在晶体c轴方向上的碳片层堆积较少且整体呈现出随机取向排列的特点,前驱体主要包括树脂、沥青及生物质三类。硬碳材料

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论