



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:3.1.1一元一次方程的概念教学目标知识与技能通过对多个实际问题的分析,让学生体验从算术方法到代数方法是一种进步,归纳并理解一元一次方程的概念,领悟一元一次方程的意义和作用.过程与方法在学生根据问题寻找相等关系、根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力.情感态度与价值观使学生经历把实际问题抽象为数学方程的过程,认识到方程是刻画现实世界的一种有效的数学模型,初步体会建立数学模型的思想.教学重点、难点使学生理解问题情境,探究情境中包含的数量关系,最终用方程来描述和刻画事物间的相等关系.教学过程问题与情境师生活动设计意图[阶段1]情境导入回顾旧知今年进行的德国世界杯足球赛,吸引了全球的目光.你喜欢足球吗?下面来看一个与足球场有关的问题.引例德国世界杯足球赛莱比锡赛场为长方形的足球场,周长为310米,长和宽之差为25教师给出引例,带领学生进入到实际问题的情境中.1、算术方法:足球场长与宽的和为310÷2=155(米).由和差关系,得足球场的长度为(155+25)÷2=90(米),宽度为90-25=65(米).2、方程方法:设足球场的长度为x米,那么足球场的宽度能用含x的式子表示为(x-25)米.根据“长方形的周长=(长+宽)×2”2[x+(x-25)].教师指出,如何解出方程中的未知数,是今后要学习的知识.然后,请学生回顾方程的概念:含有未知数的等式,叫做方程.教师引导学生总结引例的研究方法,启发学生比较算术方法和方程方法的区别:用算术方法解决问题时,只能用已知数,而用方程方法解题时用字母表示的未知数也可以参与运算.算术方法主要运用逆向思维,列方程主要运用正向思维.依据新课程的理念,教师要创造性地使用教材.作为引入本课的第一个例子,选用了“世界杯足球赛赛场问题”,以激发学生的学习兴趣,而且设置了符合学生认知水平的问题情境,以达到由浅入深、逐步提高的目的.[阶段2]联系实际探究新知请同学们用方程来研究问题.例1青藏铁路格尔木至拉萨段全长共1142千米,途中经过冻土路段和非冻土路段.若列车在冻土路段的速度为每小时80千米,非冻土路段的速度为每小时110千米例2学校召开运动会,王平负责给同学们购买饮料.现在要选购两种饮料共40瓶,其中矿泉水1.5元一瓶,茶饮料2元一瓶.王平计划恰好花费65元购买这些饮料,那么两种饮料应该各买多少瓶呢?例3将一个底面半径是5厘米、高为36厘米的“瘦长”型圆柱钢材锻压成高为9厘米的“矮胖”型圆柱钢材,底面半径变成了多少厘米?(归纳概念:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.[阶段3]巩固练习拓展思维练习1判断下列式子是不是一元一次方程,为什么?(1)7x+5=9;(2)3x-6;(3)2x2-4x=5;(4)2y+3=-6;(5)x-7y=5;(6)2a>9.练习2列方程研究古诗文问题:隔墙听得客分银,不知人数不知银.七两分之多四两,九两分之少半斤.(注:在古代1斤是16两,半斤就是8两)[阶段4]归纳小结布置作业归纳小结:布置作业:教师引导学生从实际问题列出方程.明确用方程研究问题,所以设列车经过的冻土路段为x千米,然后分析发现两个相等关系:冻土路段路程+非冻土路段路程=全程冻土路段行驶时间+非冻土路段行驶时间=全程行驶时间可以利用第一个相等关系,得到非冻土路段行驶路程为(1142-x)千米,再将第二个相等关系用字母和数字表示出来,得到方程+=12.由学生尝试分析数量关系,找出相等关系,列出方程:购买矿泉水数量+购买茶饮料数量=总的选购数量购买矿泉水的费用+购买茶饮料的费用=总的花费预案1设购买矿泉水的数量为x瓶,根据第一个相等关系,得到购买茶饮料的数量为(40-x)瓶.根据第二个相等关系得到方程1.5x+2(40-x)=65.预案2设购买茶饮料的数量为瓶,则购买矿泉水的数量为(40-x)瓶,得到方程2x+1.5(40-x)=65.预案3设购买购买矿泉水x瓶,购买茶饮料y瓶,可以列出两个方程x+y=40和1.5x+2y=65.教师指出预案3的方程也可以解决问题,这方面的知识将在今后进一步学习.先请学生回忆小学学过的圆柱体积公式:圆柱体积=底面积×高再通过动画演示使学生注意到锻压前后圆柱的体积不变,然后由学生根据这一相等关系,设底面半径变成了x厘米,列出方程:3.14×52×52×36=3.14·x2·9.在研究了四个实际问题后,教师引导学生观察得到的方程:找出前三个方程的共同特点:只含有一个未知数,并且未知数的指数都是1,进而归纳出一元一次方程的概念.中的两个方程都分别含有两个未知数,并且未知数的指数都是1,它们都是二元一次方程.第5个方程中唯一的未知数的指数是2,它是一元二次方程.得出概念后,请同桌的学生互相举出一元一次方程的例子,进行辨析.练习1设计的6个式子中,有的不是等式,有的未知数不止一个,有的未知数的指数不是1.师生理解古诗文:有几个客人在房间内分银子,每人分七两,最后多四两,每人分九两,最后还少八两,问有几个人?有几两银子?预案1学生用x表示人数,然后根据两种分法总银两数不变,得到方程7x+4=9x-8.预案2用x表示总银两数,根据两种分法人数相同,得到方程=.然后,教师向学生介绍中国古代数学家在方程发展过程中所做贡献:在我国,“方程”一词最早出现于《九章算术》.《九章算术》全书共分九章,第八章就叫“方程”.12世纪前后,我国数学家用“天元术”来解题,即先要“立天元为某某”,相当于“设为某某”.14世纪初,我国元朝数学家朱世杰创立了“四元术”,四元指天、地、人、物,相当于四个未知数.采用小组合作学习方式,以四人小组为单位合作设计一个实际问题,然后在全班进行小组交流.教师引导学生从回顾知识和总结方法两个方面进行课堂小结.(1)回顾知识:方程、一元一次方程的概念.(2)总结方法:分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法.设未知数列方程一元一次方程实际问题一元一次方程实际问题作业:P833.1习题第1、3题.通过设置问题情境,引导学生关注社会,使学生进一步经历列方程研究实际问题的过程,培养学生将实际问题抽象为数学问题的能力.选择与学生生活非常贴近的情境来设计问题,引导学生关注生活及培养学生在生活中应用数学的意识.学生可能设的未知数不同,列出不同的方程,有利于培养学生的发散思维.设计的问题情境可以让学生关注生产实践,并且前面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 武术体育课件
- 武术与健康课件
- 意识障碍的治疗
- HDU病房管理规范与优化策略
- 2025年门市出租协议
- 工业发展条件分析与评价类(答题模板)解析版-2025年中考地理答题技巧与模板构建
- 《多功能有毒有害气体检测仪》编制说明
- 设施西瓜标准综合体 编制说明
- 老年人腹泻护理要点解析
- 职工工会职能培训体系
- 成本加酬金合同结算方法
- 河南省许昌市2023-2024学年高二下学期7月期末教学质量检测数学试题
- 第一章 第一节 管理的含义和特征讲解
- 以图书馆资源促进学生阅读的研究
- 上海市物业服务合同示范文本-2023版包干制
- 小学数学五年级下册第三单元《分数乘法》作业设计
- 《我们奇妙的世界》公开课一等奖创新教学设计-5
- 2024年上海市高考英语完形填空试题真题汇编(含答案详解)
- 马拉之死艺术鉴赏
- 丰富多彩的民族节日的教案
- 一型糖尿病患者健康宣教
评论
0/150
提交评论