版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Theultrasonicwavepropagationincompositematerial
anditscharacteristicevaluation
JunjieChang,ChangliangZheng,Qing-QingNi
1.Introduction
FRPcompositematerialswereappliedtovariousfields,suchasaircraftandspacestructures,becauseoftheexcellentcharacteristics,e.g.,light-weight,highratioofrelativeintensityandhighratioofrelativerigidity.DespiteFRPhavingsuchoutstandingcharacteristic,cracksinthematrixandfracturesofthefibermakedebondingsuchkindofdamageeasytooccurbetweenthefiberandthematrix,orthemulti-layers.Thesedamagesaredifficulttobedetecteddirectlybyvisualinspectionfromthesamplesurface,causingtroubletoensurethereliabilityandsafetyofthecompositematerialandstructures.Meanwhile,healthmonitoringtechnologiesofmaterialsareindispensable.Amongthem,theultrasonichealthmonitoringtechnologyattractslotsofattentionsinrecentyears.Simulationsbyfiniteelementmethodhavebeenperformedforthedevelopmentofapparatusforultrasonicdamage-detection,suchasultrasonicpictureinspectionandultrasoniclaser,andfortheverificationoftheirsafetyandvalidity.Researchesandcalculationsonthepropagationanalysisoftheultrasonicwaveinfiberstrengtheningcompositematerialshavebeenwellconductedandreported[1–8].
Onthesolidinterface,twokindsofboundariescanbeconsidered.Oneisliquidcontactinwhichthinlubricantisplaced,andonlypowerandpositionmovementperpendiculartotheinterfacearetransmitted.Theotheroneiscompletesolidcombination,whichpowerandpositionmovementbothperpendiculartoandparalleltotheinterfacearetransmitted.
Fiberstrengtheningcompositematerial,theinterfacebetweenthefiberandthematrixcanbeconsideredtobesolidcontact.Inthecaseof,debondingexistingbetweenthematrixandthefiber,fewliteratureswerefound,sincetheconversionsofthetransmittedwavemode,reflectionwavemodeandreflectionpulsephase(waveform)maketheanalysisverycomplicated.Providedthisproblemtobesolved,thequalityofthematerials,tosomeextent,canbeestimatedfromthesoundimpedanceofthereflectorandthetransmissionobject,andtheoptimaldamage-detectionmethodcanbealsoassumedinasimulation.
Inthisresearch,inthesimulationofthetechniquemonitoringthehealthbyanultrasonicwavemethod,theultrasonicwavedistributionpatternwasanalyzedwiththebasictheoryforwavepropagationbyusingthemodelforfiberstrengtheningcompositematerial.Namely,itaimsatobtainingtheamplitudeofthereflectionwaveandtheamplitudeofatransmittedwave,whenthelongitudinalwavehasunitamplitudeincidenceinmodelcompoundmaterial.Inthecaseofanultrasonicwavepropagationinsideamodelmedia,theratesofthereflectivelongitudinal,reflectivetraversewave,transmissionlongitudinalwaveandatransmissiontraversewavegeneratedatageneralincidenceangleintheinterface(afiberandexfoliation)wereanalyzedandreflectivecoefficientandatransmissioncoefficientweregotten,
respectively.Visualizedstudiesseparatingintoalongitudinalwaveandatraversewavewerecarriedout,andthemechanismsofalongitudinalwavedistributionandatraverse-wavedistributionwereelucidatedwhentheultrasonicwavepropagatedinsideacompositematerial.
2.Ultrasonicwaveequations
Considerasinglefibercomposite,i.e.,asinglefiberisembeddedinamatrix.TwodimensionsanalysisisconductedasshowninFig.2.Inthiscase,whenanultrasonicwavepropagatesinthissolidmedia,fromHooke’slaw,thestress–strainrelationshipfortwo-dimensionalplanestraininanisotropicmediaiswrittenasfollows[2]:
(1)
(2)
(3)
(4)
WherekandlareLame′constants,andtheTsuperscriptdenotesthetransposition.
Theultrasonicwaveequationsofmotionfortwodimensionalplanestraininanisotropicmediaareasfollows:
(5)
Where,thefirsttermontheleft-handsideofEq.(5)correspondstoalongitudinalwave,andthesecondtermcorrespondstoatransversewave.
isdensity.Ifthelongitudinalwavevelocity
andtransversewavevelocity
areintroducedtheultrasonicwaveequationsofmotionfortwo-dimensionalplanestraincanberewrittenby
(6)
Inthecaseofaplaneadvancingwave,thefollowingformulaisusedtocalculatefortheoscillatingenergygeneratedbytheultrasonicwaveperunittime:
(7)
3.Resultsofanalysisandsimulation
3.1.Transmissionenergyindifferentinterfaceshapes
Whenanincidentverticalwaveisobliquelyirradiated,fourwavesasshowninFig.3,i.e.,reflectedlongitudinalwave,reflectedtransversewave,transmittedlongitudinalwaveandtransmittedtransversewave,wouldappearontheinterface.Inotherwords,theshapeoftheinterfacebetweenepoxyandglassmayinfluencethepropagationoftheultrasonicwave.Forthisreason,themodelwithdifferentinterfaceshapesasshowninFig.1wasusedtoinvestigatetheinfluenceofinterfaceshapeonwavepropagationbehavior.Thevolumefractionproportionofbothmaterialsis1:1,despiteofthedifferentinterfaceshapesofthethreemodels.Thatistosay,theglass-volume-percentageofallthemodelsis50%.ThepropertiesofeachmediumusedintheanalysisareshowninTable1.Asaboundaryconditionofthemodel,absorptionisconsideredontherightandleftedge,whileitissymmetrical(theroller)ontheupanddowndirection.TheanalyticconditionandtheinputparameterswereshowninTable1.
Fig.2showsthetransmissionenergyoftheultrasonicwavepropagationforthesefourmodelsshowninFig.1.
Fig.1.Fourdifferentinterfaceshapesbetweenepoxyandglass.
Herethetransmissionenergywasdefinedbytheaverageenergyperunitarea,lJ/mm2,atthereceiveredge.Asseen,inModel1,theincidentultrasonicwaveisperpendiculartotheplaneinterface,andtransmittedwaveoccursalongwholeplane,sothatthetransmissionenergyisfarlargerthanthatintheothermodels.Thefull-reflectiontakesplaceinpartofinterfaceinbothModel2andModel3whentheincidenceangleislargerthanthecriticalanglebecausetheultrasonicwaveradiatesobliquelyonaconvexorconcaveinterface.Aboutonethirdoftheincidentwaveexperiencesfull-reflectioninModel2andModel3.However,thetransmissionenergyofModel3islargerthanthatofModel2.AsecondpeakappearsinthetransmissioncurveofModel3.Peak1isareflectedwavethatpropagatesasasecondarywavesourceneartheup-down-wardinterface(intheglassregion),whilepeak2isatransmittedwaveinthecentralpartoftheglassregion.Thereasonmightbethatneartheinterface,arefractiveindexdistributionoccurs,resultingintheappearanceofthescatteredwaves,includingrefractionandreflectionwaves.
Thefull-reflectiontakesplaceininterfaceofModel4(incidenceangleis45_).Allprimaryincidentwaveswerereflected,andtheverysmalltransmissionenergythatshowsasfigureisbecausethedispersionwaveandthereflectedwavepenetratedthepartassecondarywavesourcefromtheverticalneighborhood.
3.2.Influenceofdifferentfiberconditions
Refractiveindexdistributionoccursnearthesecondphaseboundaryduetothesecondphasecompounding,resultingintheappearanceofthescatteredwaves,includingrefractionandreflectioninthecompositematerialsstrengthenedbyfibers.Inthenext,thescatteringoftheultrasonicwaveshowninFig.1willbetakenintoconsideration.Thescattersoccurduetofibersembeddedincompositematerials.Theincidentwave
,propagatinginmatrixregion,isasinusoidalwave.Whentheincidentwavereachesthefiber,someistransmittedintothefiber,andtheotherisreflectedonthefiber/matrixinterface,andbecomesasecondarywavesource.Accordingtotheoverlappingprincipleofwavefunctions,thewholewavefunction
canbeexpressedasasumoftheincidentwave
andthescatteredwave
.
(8)
Wherethescatteredwave
includesallthewavesscatteringcomponentsgeneratedduetotheinterfacefromtheknownwave
.
ThemodelfigureofthecompositematerialsfortheinvestigationofthescatterswasdesignedaswhatshowninFig.3,wherethreefiberswithdifferentshapeswereembeddedinthematrix.Thesizeofthemodelwas
.Theboard-shapedglassfiberwiththickness
wasembeddedinthecenterofthematrixofepoxyinModel1,andwasobliquelyembeddedinModel2.Acolumnshapedglassfiberwithadiameter
wasembeddedinthecenterofmatrixinModel3.Theabovethreemodelshadacommonfiberpercentageof20.TheanalyticconditionandtheinputparameterswereshowninTable1.
ForthemodelsinFig.3,whentheincidentwaveontheleft-handsideoftheglassregionarrivedatthefirstinterfacebetweentheepoxyandglass,thetransmittedwaveandthereflectedwavearose.Thenthereflectedwavepropagatedtotheincidenceside,whilethetransmittedwavepropagatedtothereceiversideandarrivedatthesecondinterfaceoftheglassandepoxythroughtheglassregion.
Thesecondtransmittedwaveandthesecondreflectedwavearoseatthesecondinterface,andamultiplexreflectionoccurredintheglassregion.Fortheboard-shapedfiber(planefiber)andthecolumn-shapedfiber(cylindricalfiber),Fig.4showsthecomparisonsoftheanalyticresultsinthecasesofModel1(fiberthickness
),Model2(fiberthickness
,
_)andModel3(fiberdiameter
)inFig.3,withanequivalentfibervolumefractionbutwithadifferentshape.Asseenfromthefigure,thetransmissionenergyoftheModel1isfarlargerthanthatModel2andModel3.
FromFig.4,whichembeddedtheboard-shapedfiber,twoenergypeakswereclearlyobservedbytransmissionenergycurveinModel1andModel3.InModel1,thestrongpeakscorrespondtothefirsttransmittedwave,andfourweakpeaksareascribedtothefirstreflectedwavebytheglassfiber.InModel3,thefirstenergypeakresultedfromatransmittedwavethroughtheglassfiberregion,whilethesecondenergypeakwasduetothewavepropagatingthroughtheupperandlowerregionsoftheepoxy.Consequently,itcanbeunderstoodwhythetransmissionenergyfortheboard-shapedfiberislargerthanthatofthecolumn-shapedfiber,whenthefibervolumefractionwasthesame.
4.Behaviorofwavepropagationincompositematerial
4.1.Analysismodelandultrasonicpropagationsimulation
Mostoffiberreinforcedcompositesmaterialmaybeconsideredasaninhomogeneousbodymicroscopically,andahomogeneousonemacroscopically.Forthecompositeswithfibers,thefiberarraymodelwillbeusefultotakeintoaccountofthereflectionand/ortransmissionofmultiinterfaces.Inordertoevaluatethemacroscopiccharacteristicofsuchacompositematerial,atwo-dimensiondomainwithdifferentfiberarrayswasproposedasshowninFig.5.Inthismodel,circularglassfiberswereembeddedwithhexagonalintheinterioroftheepoxymatrix.Thesizeofthemodelwas
;thefiberdiameterisd.Anincidentwaveof100MHzwasused.Themodelforanalysiswasdividedinto
elements(1,72,80,000totalelements).Inordertoaccountforthelossofloadcarryingcapacityofthefailedelements,thestiffnessofsuchelementsarereducedbytheuseofnextmethod.
Fig.6showstheseriesofstressdispersionpatternsduringtheultrasonicwavepropagationformodeloffiberreinforcedcompositesinFig.5(fiberdiameter
,withoutattenuation).Whentheultrasonicwavewaspropagatedoutreachedthefiber,thereflectedwave,thetransmittedwave,anddispersionwavewereappearedclearly(Fig.6(a)).Ifawavemotionarrivedattheinterfacebetweenthefiberandthematrix,partofthewavewasreflectedasasecondarysourcewave,andatthesametimeadispersionwavewasgeneratedaroundthefiber.Theotherpartofthewavewastransmittedfiberandpropagatedtoreceiverside.Themultiplexreflectiontookplaceinteriorofthefiber(Fig.6(b)).Moreover,thewavewhichspreadsthecircumferenceofthefiberinterfereseachotheramongfibers,thepropagationsituationoftheultrasonicwavebecomefurthercomplicatesthanthatofbefore(Fig.6(c)–(e)).Fromtheseresults,theinfluenceoffiberonpropagationanddispersionofanultrasonicwaveinacompositematerialcouldbevisualizedandunderstood.
4.2.Influenceoffiber-volume-percentageandwithattenuationinmatrix
Whendiameteroffiberischangedby
andattenuationwith/withoutattenuationinmatrix,whichinvestigateshowthepropagationactionoftheultrasonicwaveinadistributedcompositematerialmodel.Figs.7and8haveshownthetimehistorycurveofreflectionenergywith/withoutattenuationinepoxymatrix,thatduringtheultrasonicwavepropagationformodeloffiberreinforcedcompositesinFig.5,respectively.Fig.9hasshownthetimehistorycurveoftransmittedenergywithattenuationinepoxymatrix.Fig.10hasshownthatcomparisonoftransmissionenergyratiowithand/orwithoutattenuationduringtheultrasonicwavepropagationformodeloffiber-reinforcedcompositesinFig.5,respectively.Afigureincasewithoutattenuationinepoxymatrixisomitted.
Ifthewith/withoutattenuationinepoxymatrixiscompared,thepeakvalueofreflectedenergycurve(inthecaseoffiberdiameter
)withattenuationinepoxymatrix(attenuationcoefficient120dB/m/MHz)issmallerabout30%thanthatwithoutattenuationinepoxymatrix.Moreover,althoughthereflectedenergycurveinthefigureisdisplayedonlytotwopeaks,the2ndpeakvalueislargerthanthe1stpeakvalue.The1stpeakvalueistheenergyofthereflectedwavefromafiber3,andthe2ndpeakvalueistheenergyofthereflectedwavefromfibers1and6(Fig.5).Disorderaroseonthesubsequentreflectiveenergycurve,andregularitywaslost.Moreover,itfollowsontheincreaseinfibersdiameter(fibercontent)thattheenergyofareflectedwaveincreasesirrespectiveofwith/withoutattenuationinepoxymatrix.
Inthecasewithattenuationinepoxymatrix,atforthetransmittedenergyhistorycurve,andthepeakvalue(inthecaseoffiberdiameterd=2k)inthetransmittedenergycurveisabouthalfofthatwithoutattenuation,andthegradeofinfluencebyattenuationinepoxymatrixshowup.Itbecomesclearerfromthe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育的历史发展课程设计
- 教育信息系统课程设计
- 工厂废旧物资管理制度
- 开展本项目的风险评估与应急预案
- 2024版品牌使用权授权协议版
- 某某土地增减挂钩施工组织设计方案
- 全过程咨询项目建设管理方案
- 欢乐谷广场灯光秀项目施工组织设计方案
- 部门内部学习方案
- 施工围挡及围墙改造专项施工方案
- DBJ15 31-2016建筑地基基础设计规范(广东省标准)
- 2024年村官面试试题及答案
- 2024中科信工程咨询(北京)限责任公司招聘6人高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024版离婚退还彩礼协议
- 小学语文作业设计评价表
- 小学二年级数学第一学期奥数竞赛试题人教版
- 亲子沟通与孩子心理健康
- 2024-2025学年度北师版七上数学-第十周自主评价练习(期中测评)【课件】
- 消费积分返利合同范本
- 《磁敏二极管》课件
- 项目重点难点分析及应对措施
评论
0/150
提交评论