版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Theultrasonicwavepropagationincompositematerial
anditscharacteristicevaluation
JunjieChang,ChangliangZheng,Qing-QingNi
1.Introduction
FRPcompositematerialswereappliedtovariousfields,suchasaircraftandspacestructures,becauseoftheexcellentcharacteristics,e.g.,light-weight,highratioofrelativeintensityandhighratioofrelativerigidity.DespiteFRPhavingsuchoutstandingcharacteristic,cracksinthematrixandfracturesofthefibermakedebondingsuchkindofdamageeasytooccurbetweenthefiberandthematrix,orthemulti-layers.Thesedamagesaredifficulttobedetecteddirectlybyvisualinspectionfromthesamplesurface,causingtroubletoensurethereliabilityandsafetyofthecompositematerialandstructures.Meanwhile,healthmonitoringtechnologiesofmaterialsareindispensable.Amongthem,theultrasonichealthmonitoringtechnologyattractslotsofattentionsinrecentyears.Simulationsbyfiniteelementmethodhavebeenperformedforthedevelopmentofapparatusforultrasonicdamage-detection,suchasultrasonicpictureinspectionandultrasoniclaser,andfortheverificationoftheirsafetyandvalidity.Researchesandcalculationsonthepropagationanalysisoftheultrasonicwaveinfiberstrengtheningcompositematerialshavebeenwellconductedandreported[1–8].
Onthesolidinterface,twokindsofboundariescanbeconsidered.Oneisliquidcontactinwhichthinlubricantisplaced,andonlypowerandpositionmovementperpendiculartotheinterfacearetransmitted.Theotheroneiscompletesolidcombination,whichpowerandpositionmovementbothperpendiculartoandparalleltotheinterfacearetransmitted.
Fiberstrengtheningcompositematerial,theinterfacebetweenthefiberandthematrixcanbeconsideredtobesolidcontact.Inthecaseof,debondingexistingbetweenthematrixandthefiber,fewliteratureswerefound,sincetheconversionsofthetransmittedwavemode,reflectionwavemodeandreflectionpulsephase(waveform)maketheanalysisverycomplicated.Providedthisproblemtobesolved,thequalityofthematerials,tosomeextent,canbeestimatedfromthesoundimpedanceofthereflectorandthetransmissionobject,andtheoptimaldamage-detectionmethodcanbealsoassumedinasimulation.
Inthisresearch,inthesimulationofthetechniquemonitoringthehealthbyanultrasonicwavemethod,theultrasonicwavedistributionpatternwasanalyzedwiththebasictheoryforwavepropagationbyusingthemodelforfiberstrengtheningcompositematerial.Namely,itaimsatobtainingtheamplitudeofthereflectionwaveandtheamplitudeofatransmittedwave,whenthelongitudinalwavehasunitamplitudeincidenceinmodelcompoundmaterial.Inthecaseofanultrasonicwavepropagationinsideamodelmedia,theratesofthereflectivelongitudinal,reflectivetraversewave,transmissionlongitudinalwaveandatransmissiontraversewavegeneratedatageneralincidenceangleintheinterface(afiberandexfoliation)wereanalyzedandreflectivecoefficientandatransmissioncoefficientweregotten,
respectively.Visualizedstudiesseparatingintoalongitudinalwaveandatraversewavewerecarriedout,andthemechanismsofalongitudinalwavedistributionandatraverse-wavedistributionwereelucidatedwhentheultrasonicwavepropagatedinsideacompositematerial.
2.Ultrasonicwaveequations
Considerasinglefibercomposite,i.e.,asinglefiberisembeddedinamatrix.TwodimensionsanalysisisconductedasshowninFig.2.Inthiscase,whenanultrasonicwavepropagatesinthissolidmedia,fromHooke’slaw,thestress–strainrelationshipfortwo-dimensionalplanestraininanisotropicmediaiswrittenasfollows[2]:
(1)
(2)
(3)
(4)
WherekandlareLame′constants,andtheTsuperscriptdenotesthetransposition.
Theultrasonicwaveequationsofmotionfortwodimensionalplanestraininanisotropicmediaareasfollows:
(5)
Where,thefirsttermontheleft-handsideofEq.(5)correspondstoalongitudinalwave,andthesecondtermcorrespondstoatransversewave.
isdensity.Ifthelongitudinalwavevelocity
andtransversewavevelocity
areintroducedtheultrasonicwaveequationsofmotionfortwo-dimensionalplanestraincanberewrittenby
(6)
Inthecaseofaplaneadvancingwave,thefollowingformulaisusedtocalculatefortheoscillatingenergygeneratedbytheultrasonicwaveperunittime:
(7)
3.Resultsofanalysisandsimulation
3.1.Transmissionenergyindifferentinterfaceshapes
Whenanincidentverticalwaveisobliquelyirradiated,fourwavesasshowninFig.3,i.e.,reflectedlongitudinalwave,reflectedtransversewave,transmittedlongitudinalwaveandtransmittedtransversewave,wouldappearontheinterface.Inotherwords,theshapeoftheinterfacebetweenepoxyandglassmayinfluencethepropagationoftheultrasonicwave.Forthisreason,themodelwithdifferentinterfaceshapesasshowninFig.1wasusedtoinvestigatetheinfluenceofinterfaceshapeonwavepropagationbehavior.Thevolumefractionproportionofbothmaterialsis1:1,despiteofthedifferentinterfaceshapesofthethreemodels.Thatistosay,theglass-volume-percentageofallthemodelsis50%.ThepropertiesofeachmediumusedintheanalysisareshowninTable1.Asaboundaryconditionofthemodel,absorptionisconsideredontherightandleftedge,whileitissymmetrical(theroller)ontheupanddowndirection.TheanalyticconditionandtheinputparameterswereshowninTable1.
Fig.2showsthetransmissionenergyoftheultrasonicwavepropagationforthesefourmodelsshowninFig.1.
Fig.1.Fourdifferentinterfaceshapesbetweenepoxyandglass.
Herethetransmissionenergywasdefinedbytheaverageenergyperunitarea,lJ/mm2,atthereceiveredge.Asseen,inModel1,theincidentultrasonicwaveisperpendiculartotheplaneinterface,andtransmittedwaveoccursalongwholeplane,sothatthetransmissionenergyisfarlargerthanthatintheothermodels.Thefull-reflectiontakesplaceinpartofinterfaceinbothModel2andModel3whentheincidenceangleislargerthanthecriticalanglebecausetheultrasonicwaveradiatesobliquelyonaconvexorconcaveinterface.Aboutonethirdoftheincidentwaveexperiencesfull-reflectioninModel2andModel3.However,thetransmissionenergyofModel3islargerthanthatofModel2.AsecondpeakappearsinthetransmissioncurveofModel3.Peak1isareflectedwavethatpropagatesasasecondarywavesourceneartheup-down-wardinterface(intheglassregion),whilepeak2isatransmittedwaveinthecentralpartoftheglassregion.Thereasonmightbethatneartheinterface,arefractiveindexdistributionoccurs,resultingintheappearanceofthescatteredwaves,includingrefractionandreflectionwaves.
Thefull-reflectiontakesplaceininterfaceofModel4(incidenceangleis45_).Allprimaryincidentwaveswerereflected,andtheverysmalltransmissionenergythatshowsasfigureisbecausethedispersionwaveandthereflectedwavepenetratedthepartassecondarywavesourcefromtheverticalneighborhood.
3.2.Influenceofdifferentfiberconditions
Refractiveindexdistributionoccursnearthesecondphaseboundaryduetothesecondphasecompounding,resultingintheappearanceofthescatteredwaves,includingrefractionandreflectioninthecompositematerialsstrengthenedbyfibers.Inthenext,thescatteringoftheultrasonicwaveshowninFig.1willbetakenintoconsideration.Thescattersoccurduetofibersembeddedincompositematerials.Theincidentwave
,propagatinginmatrixregion,isasinusoidalwave.Whentheincidentwavereachesthefiber,someistransmittedintothefiber,andtheotherisreflectedonthefiber/matrixinterface,andbecomesasecondarywavesource.Accordingtotheoverlappingprincipleofwavefunctions,thewholewavefunction
canbeexpressedasasumoftheincidentwave
andthescatteredwave
.
(8)
Wherethescatteredwave
includesallthewavesscatteringcomponentsgeneratedduetotheinterfacefromtheknownwave
.
ThemodelfigureofthecompositematerialsfortheinvestigationofthescatterswasdesignedaswhatshowninFig.3,wherethreefiberswithdifferentshapeswereembeddedinthematrix.Thesizeofthemodelwas
.Theboard-shapedglassfiberwiththickness
wasembeddedinthecenterofthematrixofepoxyinModel1,andwasobliquelyembeddedinModel2.Acolumnshapedglassfiberwithadiameter
wasembeddedinthecenterofmatrixinModel3.Theabovethreemodelshadacommonfiberpercentageof20.TheanalyticconditionandtheinputparameterswereshowninTable1.
ForthemodelsinFig.3,whentheincidentwaveontheleft-handsideoftheglassregionarrivedatthefirstinterfacebetweentheepoxyandglass,thetransmittedwaveandthereflectedwavearose.Thenthereflectedwavepropagatedtotheincidenceside,whilethetransmittedwavepropagatedtothereceiversideandarrivedatthesecondinterfaceoftheglassandepoxythroughtheglassregion.
Thesecondtransmittedwaveandthesecondreflectedwavearoseatthesecondinterface,andamultiplexreflectionoccurredintheglassregion.Fortheboard-shapedfiber(planefiber)andthecolumn-shapedfiber(cylindricalfiber),Fig.4showsthecomparisonsoftheanalyticresultsinthecasesofModel1(fiberthickness
),Model2(fiberthickness
,
_)andModel3(fiberdiameter
)inFig.3,withanequivalentfibervolumefractionbutwithadifferentshape.Asseenfromthefigure,thetransmissionenergyoftheModel1isfarlargerthanthatModel2andModel3.
FromFig.4,whichembeddedtheboard-shapedfiber,twoenergypeakswereclearlyobservedbytransmissionenergycurveinModel1andModel3.InModel1,thestrongpeakscorrespondtothefirsttransmittedwave,andfourweakpeaksareascribedtothefirstreflectedwavebytheglassfiber.InModel3,thefirstenergypeakresultedfromatransmittedwavethroughtheglassfiberregion,whilethesecondenergypeakwasduetothewavepropagatingthroughtheupperandlowerregionsoftheepoxy.Consequently,itcanbeunderstoodwhythetransmissionenergyfortheboard-shapedfiberislargerthanthatofthecolumn-shapedfiber,whenthefibervolumefractionwasthesame.
4.Behaviorofwavepropagationincompositematerial
4.1.Analysismodelandultrasonicpropagationsimulation
Mostoffiberreinforcedcompositesmaterialmaybeconsideredasaninhomogeneousbodymicroscopically,andahomogeneousonemacroscopically.Forthecompositeswithfibers,thefiberarraymodelwillbeusefultotakeintoaccountofthereflectionand/ortransmissionofmultiinterfaces.Inordertoevaluatethemacroscopiccharacteristicofsuchacompositematerial,atwo-dimensiondomainwithdifferentfiberarrayswasproposedasshowninFig.5.Inthismodel,circularglassfiberswereembeddedwithhexagonalintheinterioroftheepoxymatrix.Thesizeofthemodelwas
;thefiberdiameterisd.Anincidentwaveof100MHzwasused.Themodelforanalysiswasdividedinto
elements(1,72,80,000totalelements).Inordertoaccountforthelossofloadcarryingcapacityofthefailedelements,thestiffnessofsuchelementsarereducedbytheuseofnextmethod.
Fig.6showstheseriesofstressdispersionpatternsduringtheultrasonicwavepropagationformodeloffiberreinforcedcompositesinFig.5(fiberdiameter
,withoutattenuation).Whentheultrasonicwavewaspropagatedoutreachedthefiber,thereflectedwave,thetransmittedwave,anddispersionwavewereappearedclearly(Fig.6(a)).Ifawavemotionarrivedattheinterfacebetweenthefiberandthematrix,partofthewavewasreflectedasasecondarysourcewave,andatthesametimeadispersionwavewasgeneratedaroundthefiber.Theotherpartofthewavewastransmittedfiberandpropagatedtoreceiverside.Themultiplexreflectiontookplaceinteriorofthefiber(Fig.6(b)).Moreover,thewavewhichspreadsthecircumferenceofthefiberinterfereseachotheramongfibers,thepropagationsituationoftheultrasonicwavebecomefurthercomplicatesthanthatofbefore(Fig.6(c)–(e)).Fromtheseresults,theinfluenceoffiberonpropagationanddispersionofanultrasonicwaveinacompositematerialcouldbevisualizedandunderstood.
4.2.Influenceoffiber-volume-percentageandwithattenuationinmatrix
Whendiameteroffiberischangedby
andattenuationwith/withoutattenuationinmatrix,whichinvestigateshowthepropagationactionoftheultrasonicwaveinadistributedcompositematerialmodel.Figs.7and8haveshownthetimehistorycurveofreflectionenergywith/withoutattenuationinepoxymatrix,thatduringtheultrasonicwavepropagationformodeloffiberreinforcedcompositesinFig.5,respectively.Fig.9hasshownthetimehistorycurveoftransmittedenergywithattenuationinepoxymatrix.Fig.10hasshownthatcomparisonoftransmissionenergyratiowithand/orwithoutattenuationduringtheultrasonicwavepropagationformodeloffiber-reinforcedcompositesinFig.5,respectively.Afigureincasewithoutattenuationinepoxymatrixisomitted.
Ifthewith/withoutattenuationinepoxymatrixiscompared,thepeakvalueofreflectedenergycurve(inthecaseoffiberdiameter
)withattenuationinepoxymatrix(attenuationcoefficient120dB/m/MHz)issmallerabout30%thanthatwithoutattenuationinepoxymatrix.Moreover,althoughthereflectedenergycurveinthefigureisdisplayedonlytotwopeaks,the2ndpeakvalueislargerthanthe1stpeakvalue.The1stpeakvalueistheenergyofthereflectedwavefromafiber3,andthe2ndpeakvalueistheenergyofthereflectedwavefromfibers1and6(Fig.5).Disorderaroseonthesubsequentreflectiveenergycurve,andregularitywaslost.Moreover,itfollowsontheincreaseinfibersdiameter(fibercontent)thattheenergyofareflectedwaveincreasesirrespectiveofwith/withoutattenuationinepoxymatrix.
Inthecasewithattenuationinepoxymatrix,atforthetransmittedenergyhistorycurve,andthepeakvalue(inthecaseoffiberdiameterd=2k)inthetransmittedenergycurveisabouthalfofthatwithoutattenuation,andthegradeofinfluencebyattenuationinepoxymatrixshowup.Itbecomesclearerfromthe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮值班管理课程培训
- 餐饮业主培训课件
- 2026校招:北京银行题库及答案
- 2026校招:IT技术支持试题及答案
- 学生代表2026春季开学典礼发言:褪去假期松弛切换学霸模式不负时光
- 2026新学期升旗仪式讲话稿:沐春风启新做“追锋”传人
- 餐厅备餐技巧培训
- 2025年10月全国自考(教育统计与测量)真题试卷(题后含答案解析)
- 特车运输大队《道路安全管理办法、疲劳驾驶》考试题及答案
- 六年级下册语文试题-小升初基础知识与能力测试卷(含答案)
- 2026届湖南省长郡中学生物高三上期末学业质量监测模拟试题含解析
- 2025eber原位杂交检测技术专家共识解读 (1)课件
- 老年友善医院创建-社区卫生服务中心员工手册
- 古罗马公共建筑与政治象征
- 加油站反恐应急预案(3篇)
- 宫腔镜手术围手术期护理
- 2024年中考历史真题解析(安徽试卷)
- 2025美国急性冠脉综合征(ACS)患者管理指南解读课件
- 2024年华北水利水电工程集团有限公司招聘笔试参考题库含答案解析
- 《普通心理学》期末考试试题与答案
- 含能材料及应用课件
评论
0/150
提交评论