2022年山东省日照市普通高校对口单招数学自考真题(含答案)_第1页
2022年山东省日照市普通高校对口单招数学自考真题(含答案)_第2页
2022年山东省日照市普通高校对口单招数学自考真题(含答案)_第3页
2022年山东省日照市普通高校对口单招数学自考真题(含答案)_第4页
2022年山东省日照市普通高校对口单招数学自考真题(含答案)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年山东省日照市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.6人站成一排,甲乙两人之间必须有2人,不同的站法有()A.144种B.72种C.96种D.84种

2.等差数列中,a1=3,a100=36,则a3+a98=()A.42B.39C.38D.36

3.A.10B.-10C.1D.-1

4.已知集合A={1,2,3,4,5,6,7},B={3,4,5},那么=()A.{6,7}B.{1,2,6,7}C.{3,4,5}D.{1,2}

5.下列结论中,正确的是A.{0}是空集

B.C.D.

6.已知等差数列的前n项和是,若,则等于()A.

B.

C.

D.

7.A.B.C.D.

8.两个三角形全等是两个三角形面积相等的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件

9.直线ax+by+b-a=0与圆x2+y2-x-2=0的位置关系是()A.相离B.相交C.相切D.无关

10.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法

11.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a取值范围是()A.[―3,一1]B.[―1,3]C.[-3,1]D.(-∞,一3]∪[1,+∞)

12.A.一B.二C.三D.四

13.已知直线L过点(0,7),且与直线y=-4x+2平行,则直线L的方程为()A.y=-4x-7B.y=4x—7C.y=-4x+7D.y=4x+7

14.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2

B.(x-1)2+(y+1)2=2

C.(x-1)2+(y-1)2=2

D.(x+1)2+(y+1)2=2

15.不等式lg(x-1)的定义域是()A.{x|x<0}B.{x|1<x}C.{x|x∈R}D.{x|0<x<1}

16.函数在(-,3)上单调递增,则a的取值范围是()A.a≥6B.a≤6C.a>6D.-8

17.不等式组的解集是()A.{x|0<x<2}

B.{x|0<x<2.5}

C.{x|0<x<}

D.{x|0<x<3}

18.函数y=3sin+4cos的周期是()A.2πB.3πC.5πD.6π

19.A≠ф是A∩B=ф的()A.充分条件B.必要条件C.充要条件D.无法确定

20.A.B.C.

二、填空题(10题)21.已知△ABC中,∠A,∠B,∠C所对边为a,b,c,C=30°,a=c=2.则b=____.

22.若△ABC中,∠C=90°,,则=

23.算式的值是_____.

24.

25.

26.已知拋物线的顶点为原点,焦点在y轴上,拋物线上的点M(m,-2)到焦点的距离为4,则m的值为_____.

27.若复数,则|z|=_________.

28.如图所示的程序框图中,输出的S的值为______.

29.已知_____.

30.不等式(x-4)(x+5)>0的解集是

三、计算题(5题)31.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

32.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

33.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

34.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

35.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

四、简答题(10题)36.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC

37.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由

38.已知集合求x,y的值

39.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.

40.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。

41.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

42.在等差数列中,已知a1,a4是方程x2-10x+16=0的两个根,且a4>a1,求S8的值

43.已知求tan(a-2b)的值

44.已知函数:,求x的取值范围。

45.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

五、证明题(10题)46.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

47.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

48.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

49.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.

50.己知sin(θ+α)=sin(θ+β),求证:

51.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

52.△ABC的三边分别为a,b,c,为且,求证∠C=

53.若x∈(0,1),求证:log3X3<log3X<X3.

54.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

55.

六、综合题(2题)56.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

57.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

参考答案

1.A6人站成一排,甲乙两人之间必须有2人,可以先从其余4人中选出2人,安排在甲乙两人之间,在与其余两人进行排列,所以不同站法共有种。

2.B

3.C

4.B由题可知AB={3,4,5},所以其补集为{1,2,6,7}。

5.B

6.D设t=2n-1,则St=t(t+1+1)=t(t+2),故Sn=n(n+2)。

7.A

8.A两个三角形全等则面积相等,但是两个三角形面积相等不能得到二者全等,所以是充分不必要条件。

9.B

10.C为了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理的抽样方法是分层抽样。

11.C直线与圆的公共点.圆(x-a)2+y2=2的圆心C(a,0)到x-y+1=0

12.A

13.C直线的点斜式方程∵直线l与直线y=-4x+2平行,∴直线l的斜率为-4,又直线l过点(0,7),∴直线l的方程为y-7=-4(x-0),即y=-4x+7.

14.B

15.B

16.A

17.C由不等式组可得,所以或,由①可得,求得;由②可得,求得,综上可得。

18.Dy=3sin(x/3)+4cos(x/3)=5[3/5sin(x/3)+4/5cos(x/3)]=5sin(x/3+α),所以最小正周期为6π。

19.A

20.A

21.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2

22.0-16

23.11,因为,所以值为11。

24.5

25.1

26.±4,

27.

复数的模的计算.

28.11/12流程图的运算.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=1/2+1/4+1/6的值,由于1/2+1/4+1/6=11/12故答案为:11/12

29.

30.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。

31.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

32.

33.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

34.

35.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

36.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC

37.(1)(2)∴又∴函数是偶函数

38.

39.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵

若时

故当X<-1时为增函数;当-1≤X<0为减函数

40.

41.

42.方程的两个根为2和8,又∴又∵a4=a1+3d,∴d=2∵。

43.

44.

X>4

45.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。

(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,

46.

∴PD//平面ACE.

47.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B

48.

49.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即

50.

51.

52.

53.

54.

55.

5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论