




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年江苏省盐城市普通高校对口单招数学摸底卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.若sinα=-3cosα,则tanα=()A.-3B.3C.-1D.1
2.已知A={x|x+1>0},B{-2,-1,0,1},则(CRA)∩B=()A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}
3.A.B.C.
4.设f(x)=,则f(x)是()A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数
5.某品牌的电脑光驱,使用事件在12000h以上损坏的概率是0.2,则三个里最多有一个损坏的概率是()A.0.74B.0.096C.0.008D.0.512
6.设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6B.5C.4D.3
7.函数y=的定义域是()A.(-2,2)B.[-2,2)C.(-2,2]D.[-2,2]
8.函数在(-,3)上单调递增,则a的取值范围是()A.a≥6B.a≤6C.a>6D.-8
9.若函数f(x)=x2+ax+3在(-∞,1]上单调递减,则实数a的取值范围是()A.(-∞,1]B.[―1,+∞)C.(―∞,-2]D.(-2,+∞)
10.直线x+y+1=0的倾斜角为()A.
B.
C.
D.-1
11.直线:y+4=0与圆(x-2)2+(y+l)2=9的位置关系是()
A.相切B.相交且直线不经过圆心C.相离D.相交且直线经过圆心
12.已知过点A(0,-1),点B在直线x-y+1=0上,直线AB的垂直平分线x+2y-3=0,则点B的坐标是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)
13.设f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2-x,则f(-1)=()A.-3B.-1C.1D.3
14.若不等式|ax+2|<6的解集是{x|-1<x<2},则实数a等于()A.8B.2C.-4D.-8
15.已知函数f(x)=sin(2x+3π/2)(x∈R),下面结论错误的是()A.函数f(x)的最小正周期为π
B.函数f(x)是偶函数
C.函数f(x)是图象关于直线x=π/4对称
D.函数f(x)在区间[0,π/2]上是增函数
16.在空间中垂直于同一条直线的两条直线一定是()A.平行B.相交C.异面D.前三种情况都有可能
17.已知a是第四象限角,sin(5π/2+α)=1/5,那么tanα等于()A.
B.
C.
D.
18.A.第一象限角B.第二象限角C.第三象限角D.第四象限角
19.下列各组数中,表示同一函数的是()A.
B.
C.
D.
20.已知全集U=R,集合A={x|x>2},则CuA=()A.{x|x≤1}B.{x|x<1}C.{x|x<2}D.{x|x≤2}
二、填空题(10题)21.
22.在锐角三角形ABC中,BC=1,B=2A,则=_____.
23.
24.若lgx=-1,则x=______.
25.己知两点A(-3,4)和B(1,1),则=
。
26.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,一2),则圆C的方程为___________.
27.
28.
29.
30.
三、计算题(10题)31.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
32.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
33.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
34.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
35.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
36.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
37.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
38.解不等式4<|1-3x|<7
39.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
40.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
四、简答题(10题)41.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.
42.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.
43.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
44.已知函数:,求x的取值范围。
45.解不等式组
46.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长
47.已知cos=,,求cos的值.
48.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。
49.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.
50.已知是等差数列的前n项和,若,.求公差d.
五、解答题(10题)51.已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当直线l过圆心C时,求直线l的方程;(2)当直线l的倾斜角为45°时,求弦AB的长.
52.某化工厂生产的某种化工产品,当年产量在150吨至250吨之内,其年生产的总成本:y(万元)与年产量x(吨)之间的关系可近似地表示为y=x2/10-30x+400030x+4000.(1)当年产量为多少吨时,每吨的平均成本最低,并求每吨最低平均成本;(2)若每吨平均出厂价为16万元,求年生产多少吨时,可获得最大的年利润,并求最大年利润.
53.
54.
55.等差数列{an}中,a7=4,a19=2a9.(1)求{an}的通项公式;(2)设bn=1/nan求数列{bn}的前n项和Sn.
56.
57.已知函数(1)求f(x)的最小正周期;(2)求f(x)在区间[0,2π/3]上的最小值.
58.已知直线经过椭圆C:x2/a2+y2/b2=1(a>b>0)的一个顶点B和一个焦点F.(1)求椭圆的离心率;(2)设P是椭圆C上动点,求|PF|-|PB|的取值范围,并求|PF|-|PB||取最小值时点P的坐标.
59.如图,ABCD-A1B1C1D1为长方体.(1)求证:B1D1//平面BC1D;(2)若BC=CC1,,求直线BC1与平面ABCD所成角的大小.
60.已知函数f(x)=sinx+cosx,x∈R.(1)求函数f(x)的最小正周期和最大值;(2)函数y=f(x)的图象可由y=sinx的图象经过怎样的变换得到?
六、证明题(2题)61.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
62.
参考答案
1.A同角三角函数的变换.若cosα=0,则sinα=0,显然不成立,所以cosα≠0,所以sinα/cosα=tanα=-3.
2.A交集
3.A
4.C由于f(-x)不等于f(x)也不等于f(-x)。
5.A
6.B集合的运算.∵A={x|1≤x≤5},Z为整数集,则A∩Z={1,2,3,4,5}.
7.C自变量x能取到2,但是不能取-2,因此答案为C。
8.A
9.C二次函数图像的性质.根据二次函数图象的对称性有-a/2≥1,得a≤-2.
10.C由直线方程可知其斜率k=-1,则倾斜角正切值为tanα=-1,所以倾斜角为3π/4。
11.A直线与圆的位置关系.圆心(2,-1)到直线y=-4的距离为|-4-(-1)|=3,而圆的半径为3,所以直线与圆相切,
12.B由于B在直线x-y+1=0上,所以可以设B的坐标为(x,x+1),AB的斜率为,垂直平分线的斜率为,所以有,因此点B的坐标为(2,3)。
13.D函数奇偶性的应用.f(-1)=2(-1)2-(―1)=3.
14.C
15.C三角函数的性质.f(x)=sin(2x+3π/2)=-cos2x,故其最小正周期为π,故A正确;易知函数f(x)是偶函数,B正确;由函数f(x)=-cos2x的图象可知,函数f(x)的图象关于直线x=π/4不对称,C错误;由函数f(x)的图象易知,函数f(x)在[0,π/2]上是增函数,D正确,
16.D
17.B三角函数的诱导公式化简sin(5π/2+α)=sin(2π+π/2+α)=sin(π/2+α)=cosα=1/5,因α是第四象限角,所以sinα
18.B
19.B
20.D补集的计算.由A={x|x>2},全集U=R,则CuA={x|x≤2}
21.-4/5
22.2
23.-1/16
24.1/10对数的运算.x=10-1=1/10
25.
26.(x-2)2+(y+3)2=5圆的方程.圆心在AB中垂线y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圆C的方程为(x-2)2+(y+3)2=5
27.
28.π/2
29.-2/3
30.λ=1,μ=4
31.
32.
33.
34.
35.
36.
37.
38.
39.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
40.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
41.∵(1)这条弦与抛物线两交点
∴
42.
43.(1)(2)
44.
X>4
45.x2-6x+8>0,∴x>4,x<2(1)(2)联系(1)(2)得不等式组的解集为
46.
47.
48.
49.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵
∴
若时
故当X<-1时为增函数;当-1≤X<0为减函数
50.根据等差数列前n项和公式得解得:d=4
51.
52.(1)设每吨的平均成本为W(万元/吨),ω=y/x=x/10+4000/x-30≥-30=10,当且仅当x/10=4000/x,x=200吨时每吨成本最低为10万元.(2)设年利润为u万元u=16x-(x2/10-30x+4000)=-x2/10+46x-4000=-1/10(x-230)2+1290,当x=230时,umax=1290,故当年产量为230吨时,最大年利润为1290万元.
53.
54.
55.
56.
57.
58.
59.(1)ABCD-A1B1C1D1为长方体,所以B1D1//BD,又BD包含于平面BC1D,B1D1不包含BC1D,所以B1D1//平面BC1D(2)因为ABCD-A1B1C1D1为长方体,CC1⊥平面ABCD,所以BC为BC1在平面ABCD内的射影,所以角C1BC为与ABCD夹角,在Rt△C1BC,BC=CC1所以角C1BC=45°,所以直线BC1与平面ABCD所成角的大小为45°.
60.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大功率燃气轮机合作协议书
- 投标汇报总承包管理
- 大一预科考试卷子及答案
- 房地产项目合同管理及信息整合措施
- 建筑工地艾滋病职业暴露处理流程
- 新教师教育技术应用提升计划
- 2025年小学英语课堂管理优化计划
- 科研项目管理的质量保障流程
- 新进教师教学反思与心得体会
- 交通系统地下管线保护措施
- 颅高压幻灯片
- 六年级数学试卷讲评课教学设计(共16篇)
- 钢沉井制造及安装专项施工方案电子
- 虞大明教学实录——《刷子李》
- 第二代身份证号码验证器
- 市场调查与预测复习资料
- 轮扣式模板支撑架专项施工方案
- 施工组织设计双代号时标网络图
- 甘肃省审图机构
- 财政部金融企业不良资产批量转让管理办法(财金[2012]6号)
- 办公建筑设计规范2019
评论
0/150
提交评论