2022年广东省汕头市普通高校高职单招数学自考模拟考试(含答案)_第1页
2022年广东省汕头市普通高校高职单招数学自考模拟考试(含答案)_第2页
2022年广东省汕头市普通高校高职单招数学自考模拟考试(含答案)_第3页
2022年广东省汕头市普通高校高职单招数学自考模拟考试(含答案)_第4页
2022年广东省汕头市普通高校高职单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年广东省汕头市普通高校高职单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.设m>n>1且0<a<1,则下列不等式成立的是()A.am<an

B.an<am

C.a-m<a-n

D.ma<na

2.下列四个命题:①垂直于同一条直线的两条直线相互平行;②垂直于同一个平面的两条直线相互平行;③垂直于同一条直线的两个平面相互平行;④垂直于同一个平面的两个平面相互平行.其中正确的命题有()A.1个B.2个C.3个D.4个

3.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是()A.4B.5C.6D.7

4.已知A(1,1),B(-1,5)且,则C的坐标为()A.(0,3)B.(2,-4)C.(1,-2)D.(0,6)

5.下列函数为偶函数的是A.B.y=7x

C.y=2x+1

6.设集合={1,2,3,4,5,6,},M={1,3,5},则CUM=()A.{2,4,6}B.{1.3,5}C.{1,2,4}D.U

7.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2

B.2

C.

D.

8.设集合U={1,2,3,4,5,6},M={1,3,5},则C∪M=()A.{2,4,6}B.{1,3,5}C.{1,2,4}D.U

9.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}

10.以点(2,0)为圆心,4为半径的圆的方程为()A.(x-2)2+y2=16

B.(x-2)2+y2=4

C.(x+2)2+y2=46

D.(x+2)2+y2=4

11.下列函数中是奇函数的是A.y=x+3

B.y=x2+1

C.y=x3

D.y=x3+1

12.已知向量a(3,-1),b(1,-2),则他们的夹角是()A.

B.

C.

D.

13.函数y=-(x-2)|x|的递增区间是()A.[0,1]B.(-∞,l)C.(l,+∞)D.[0,1)和(2,+∞)

14.已知a=(1,2),则2a=()A.(1,2)B.(2,4)C.(2,1)D.(4,2)

15.A≠ф是A∩B=ф的()A.充分条件B.必要条件C.充要条件D.无法确定

16.已知全集U={2,4,6,8},A={2,4},B={4,8},则,等于()A.{4}B.{2,4,8}C.{6}D.{2,8}

17.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1丄l2,l2丄l3,l1//l3

B.l1丄l2,l2//l3,l1丄l3

C.l1//l2//l3,l1,l2,l3共面

D.l1,l2,l3共点l1,l2,l3共面

18.拋掷两枚骰子,两次点数之和等于5的概率是()A.

B.

C.

D.

19.已知向量a=(1,1),b=(2,x),若a+b与4b-2a平行,则实数x的值是()A.-2B.0C.2D.1

20.同时掷两枚质地均匀的硬币,则至少有一枚出现正面的概率是()A.lB.3/4C.1/2D.1/4

二、填空题(20题)21.在锐角三角形ABC中,BC=1,B=2A,则=_____.

22.

23.若l与直线2x-3y+12=0的夹角45°,则l的斜线率为_____.

24.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.

25.右图是一个算法流程图.若输入x的值为1/16,则输出y的值是____.

26.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有6件,那么n=

27.函数y=x2+5的递减区间是

28.椭圆x2/4+y2/3=1的短轴长为___.

29.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f⑴=______.

30.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.

31.

32.己知两点A(-3,4)和B(1,1),则=

33.

34.

35.已知正实数a,b满足a+2b=4,则ab的最大值是____________.

36.若复数,则|z|=_________.

37.若lgx>3,则x的取值范围为____.

38.某程序框图如下图所示,该程序运行后输出的a的最大值为______.

39.已知数列{an}是各项都是正数的等比数列,其中a2=2,a4=8,则数列{an}的前n项和Sn=______.

40.

三、计算题(5题)41.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

42.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

43.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

44.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

45.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

四、简答题(5题)46.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长

47.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值

48.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。

49.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.

50.计算

五、解答题(5题)51.

52.如图,在三棱锥A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°点E,F分别是AC,AD的中点.(1)求证:EF//平面BCD;(2)求三棱锥A-BCD的体积.

53.如图,在四棱锥P—ABCD中,平面PAD丄平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.连接BD求证:(1)直线EF//平面PCD;(2)平面BEF丄平面PAD.

54.

55.

六、证明题(2题)56.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

57.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

参考答案

1.A由题可知,四个选项中只有选项A正确。

2.B直线与平面垂直的性质,空间中直线与直线之间的位置关系.①垂直于同一条直线的两条直线相互平行,不正确,如正方体的一个顶角的三个边就不成立;②垂直于同一个平面的两条直线相互平行,根据线面垂直的性质定理可知正确;③垂直于同一条直线的两个平面相互平行,根据面面平行的判定定理可知正确;④垂直于同一个平面的两个平面相互平行,不正确,如正方体相邻的三个面就不成立.

3.C分层抽样方法.四类食品的比例为4:1:3:2,则抽取的植物油类的数量为20×1/10=2,抽取的果蔬类的数量为20×2/10=4,二者之和为6,

4.A

5.A

6.A补集的运算.CuM={2,4,6}.

7.D

8.A集合补集的计算.C∪M={2,4,6}.

9.C集合的运算.由已知条件得,A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}

10.A圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)2+(y-y0)2=r2.

11.C

12.B因为,所以,,因此,由于两向量夹角范围为[0,π],所以夹角为π/4。

13.A

14.B平面向量的线性运算.=2(1,2)=(2,4).

15.A

16.C

17.B判断直线与直线,直线与平面的位置关系.A项还有异面或者相交,C、D不一定.

18.A

19.C

20.B独立事件的概率.同时掷两枚质地均匀的硬币,可能的结果:(正,正),(正,反),(反,正),(反,反)共4种结果,至少有一枚出现正面的结果有3种,所求的概率是3/4

21.2

22.√2

23.5或,

24.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.

25.-2算法流程图的运算.初始值x=1/16不满足x≥1,所以y=2+㏒21/16=2-㏒224=-2,故答案-2.

26.72

27.(-∞,0]。因为二次函数的对称轴是x=0,开口向上,所以递减区间为(-∞,0]。

28.2椭圆的定义.因为b2=3,所以b=短轴长2b=2

29.-3.函数的奇偶性的应用.∵f(x)是定义在只上的奇函数,且x≤0时,f(x)-2x2-x,f(1)==-f(-1)=-2x(-1)2+(-l)=-3.

30.-3或7,

31.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.

32.

33.2

34.

35.2基本不等式求最值.由题

36.

复数的模的计算.

37.x>1000对数有意义的条件

38.45程序框图的运算.当n=1时,a=15;当时,a=30;当n=3,a=45;当n=4不满足循环条件,退出循环,输出a=45.

39.2n-1

40.

41.

42.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

43.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

44.

45.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

46.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则

47.

48.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)

49.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为

50.

51.

52.

53.(1)如图,在APAD中,因为E,F分别为AP,AD的中点,所以EF//PD又因为EF不包含于平面PCD,PD包含于平面PCD,所以直线EF//平面PCD.(2)因为AB=AD,∠BAD=60°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论