




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
邓发纪念中学2022届高三文科数学作业姓名:___________班级:___________考号:___________一、单选题1.(2022·全国=3\*ROMANIII,文6,理5)已知各项均为正数的等比数列的前4项和为15,且,则()A.16B.8C.4D.2(2022·全国=1\*Arabic1,理9)记Sn为等差数列{an}的前nS4=0,a5A.an=2n−5B.an=3n−10C.3.(2022·全国=3\*ROMANIII,理9)执行如图所示的程序框图,如果输入的为,则输出的值等于()A.B.C.D.二、填空题4.(2022·全国=1\*Arabic1,文14)记Sn为等比数列{an}的前n项和.若,则S4=___________.(2022·全国=1\*ROMANI,理14)记Sn为等比数列{an}的前n项和.若,则S5=____________.6.(2022·全国=3\*ROMANIII,文14)记为等差数列的前项和,若,则___________.7.(2022·全国=3\*ROMANIII,理14)记Sn为等差数列{an}的前n项和,,则___________.三、解答题8.(2022·全国=1\*Arabic1,文18)记Sn为等差数列{an}的前n项和,已知S9=-a5.(1)若a3=4,求{an}的通项公式;(2)若a1>0,求使得Sn≥an的n的取值范围.9.(2022全国=2\*ROMANII,文18)已知是各项均为正数的等比数列,.(1)求的通项公式;(2)设,求数列的前n项和.10.(2022·全国高=2\*ROMANII,理19)已知数列{an}和{bn}满足a1=1,b1=0,,.(1)证明:{an+bn}是等比数列,{an–bn}是等差数列;(2)求{an}和{bn}的通项公式.参考答案1.C【解析】【分析】利用方程思想列出关于的方程组,求出,再利用通项公式即可求得的值.【详解】设正数的等比数列{an}的公比为,则,解得,,故选C.【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键。2.A【解析】【分析】等差数列通项公式与前n项和公式.本题还可用排除,对B,a5=5,S4=4(−7+2)【详解】由题知,S4=4a1+【点睛】本题主要考查等差数列通项公式与前n项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n项公式即可列出关于首项与公差的方程,解出首项与公差,在适当计算即可做了判断.3.C【解析】【分析】根据程序框图,结合循环关系进行运算,可得结果.【详解】输入的为,不满足条件;不满足条件;满足条件输出,故选C.【点睛】解答本题关键是利用循环运算,根据计算精确度确定数据分析.4..【解析】【分析】本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.【详解】详解:设等比数列的公比为,由已知,即解得,所以.【点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算,避免繁分式计算.5.100【解析】【分析】根据题意可求出首项和公差,进而求得结果.【详解】得【点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键。6..【解析】【分析】本题根据已知条件,列出关于等比数列公比的方程,应用等比数列的求和公式,计算得到.题目的难度不大,注重了基础知识、基本计算能力的考查.【详解】设等比数列的公比为,由已知,所以又,所以所以.【点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式分式计算,部分考生易出现运算错误.7.4.【解析】【分析】根据已知求出和的关系,再结合等差数列前n项和公式求得结果.【详解】因,所以,即,所以.【点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案.8.(1);(2).【解析】【分析】(1)首项设出等差数列的首项和公差,根据题的条件,建立关于和的方程组,求得和的值,利用等差数列的通项公式求得结果;(2)根据题意有,根据,可知,根据,得到关于的不等式,从而求得结果.【详解】(1)设等差数列的首项为,公差为,根据题意有,解答,所以,所以等差数列的通项公式为;(2)由条件,得,即,因为,所以,并且有,所以有,由得,整理得,因为,所以有,即,解得,所以的取值范围是:【点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.9.(1);(2).【解析】【分析】(1)本题首先可以根据数列是等比数列将转化为,转化为,再然后将其带入中,并根据数列是各项均为正数以及即可通过运算得出结果;(2)本题可以通过数列的通项公式以及对数的相关性质计算出数列的通项公式,再通过数列的通项公式得知数列是等差数列,最后通过等差数列求和公式即可得出结果。【详解】(1)因为数列是各项均为正数的等比数列,,,所以令数列的公比为,,,所以,解得(舍去)或,所以数列是首项为、公比为的等比数列,。(2)因为,所以,,,所以数列是首项为、公差为的等差数列,。【点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题。10.(1)见解析;(2),。【解析】【分析】(1)可通过题意中的以及对两式进行相加和相减即可推导出数列是等比数列以及数列是等差数列;(2)可通过(1)中的结果推导出数列以及数列的通项公式,然后利用数列以及数列的通项公式即可得出结果。【详解】(1)由题意可知,,,,所以,即,所以数列是首项为、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024农业植保员考试前瞻试题及答案
- 六安市金安区 毛坦厂镇浸堰村蔬菜大棚产业项目 实施方案
- (高清版)DB50∕T 867.23-2021 安全生产技术规范 第23部分:纺织企业
- 模具设计师资格考试的时间管理技巧试题及答案
- 提升自信迎接2024年篮球裁判员考试 试题及答案
- 2024年模具设计师考试突破障碍试题及答案
- 农场公用基础设施建设项目可行性研究报告(模板范文)
- 2024年救生员职业资格备考试题
- 建立学习伙伴关系2024年体育经纪人资格试题及答案
- 2024年模具设计师资格考试的前沿动态试题及答案
- 12D401-3 爆炸危险环境电气线路和电气设备安装
- 供应商业务连续性计划
- 老年外科患者围手术期营养支持中国专家共识(2024版)
- 2024北京八十中初一(下)期中英语 (教师版)
- 城市更新中的建筑设计策略探讨
- 全国应急救援技术竞赛理论考试题库(附答案)
- 2024年辽宁省初中学业水平考试物理模拟卷一
- 居住区规划智慧树知到期末考试答案章节答案2024年湖南师范大学
- 安全生产三项制度内容
- 体质健康管理典型案例
- 《纪念刘和珍君》阅读题及答案
评论
0/150
提交评论