2022-2023学年山东省济宁邹城八中学数学八下期末综合测试模拟试题含解析_第1页
2022-2023学年山东省济宁邹城八中学数学八下期末综合测试模拟试题含解析_第2页
2022-2023学年山东省济宁邹城八中学数学八下期末综合测试模拟试题含解析_第3页
2022-2023学年山东省济宁邹城八中学数学八下期末综合测试模拟试题含解析_第4页
2022-2023学年山东省济宁邹城八中学数学八下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.直角三角形中,斜边,,则的长度为()A. B. C. D.2.若一次函数的函数值y随x的值增大而增大,且此函数的图象不经过第二象限,则k的取值范围是()A. B. C. D.或3.若点P(a,b)是正比例函数y=-2A.2a+3b=0 B.2a-3b=0 C.3a+2b=0 D.3a-2b=04.计算的结果是()A.-3 B.3 C.6 D.95.如图所示,正方形ABCD的边长为6,M在DC上,且DM=4,N是AC上的动点,则DN+MN的最小值是()A. B. C. D.6.若点A(2,4)在函数的图象上,则下列各点在此函数图象上的是().A.(0,) B.(,0) C.(8,20) D.(,)7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为()A. B. C. D.8.若顺次连结四边形各边中点所得的四边形是菱形,则原四边形()A.一定是矩形 B.一定是菱形 C.对角线一定互相垂直 D.对角线一定相等9.如图,在Rt△ABC中,∠C=90°,AB=2BC,则∠A=()A.15° B.30° C.45° D.60°10.如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k-m)x+b<0的解集为()A. B. C. D.11.如图,矩形被对角线、分成四个小三角形,这四个小三角形的周长之和是,.则矩形的周长是()A. B. C. D.12.一次函数的图象如图所示,当时,则的取值范围是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,线段AB的长为4,P为线段AB上的一个动点,△PAD和△PBC都是等腰直角三角形,且∠ADP=∠PCB=90°,则CD长的最小值是____.14.如图,第、、、…中分别有“小正方形”个、个、个、个…,则第幅图中有“小正方形”__________个.(1)(2)(3)(4)15.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,未超过20本的不打折,试写出付款金额(单位:元)与购买数量(单位:本)之间的函数关系_______.16.如图,四边形ABCD为菱形,点A在y轴正半轴上,AB∥x轴,点B,C在反比例函数上,点D在反比例函数上,那么点D的坐标为________.17.如图,在矩形中,点在对角线上,过点作,分别交,于点,,连结,.若,,图中阴影部分的面积为,则矩形的周长为_______.18.在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2OB2.则点B2的坐标_______三、解答题(共78分)19.(8分)阅读下列一段文字,然后回答下列问题:已知平面内两点P1(x1,y1),P2(x2,y2),其两点间的距离。例如:已知P(3,1),Q(1,-2),则这两点间的距离.特别地,如果两点M(x1,y1),N(x2,y2),所在的直线与坐标轴重合或平行于坐标轴或者垂直于坐标轴,那么这两点间的距离公式可简化为或。(1)已知A(2,3),B(-1,-2),则A,B两点间的距离为_________;(2)已知M,N在平行于y轴的直线上,点M的纵坐标为-2,点N的纵坐标为3,则M,N两点间的距离为_________;(3)在平面直角坐标系中,已知A(0,4),B(4,2),在x轴上找点P,使PA+PB的长度最短,求出点P的坐标及PA+PB的最短长度.20.(8分)如图,在平面直角坐标系中,直线与、轴分别交于、两点.点为线段的中点.过点作直线轴于点.(1)直接写出的坐标;(2)如图1,点是直线上的动点,连接、,线段在直线上运动,记为,点是轴上的动点,连接点、,当取最大时,求的最小值;(3)如图2,在轴正半轴取点,使得,以为直角边在轴右侧作直角,,且,作的角平分线,将沿射线方向平移,点、,平移后的对应点分别记作、、,当的点恰好落在射线上时,连接,,将绕点沿顺时针方向旋转后得,在直线上是否存在点,使得为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.21.(8分)已知:,与成正比例,与成反比例,且时,;时.(1)求关于的函数关系式.(2)求时,的值.22.(10分)如图1,在正方形和正方形中,边在边上,正方形绕点按逆时针方向旋转(1)如图2,当时,求证:;(2)在旋转的过程中,设的延长线交直线于点.①如果存在某一时刻使得,请求出此时的长;②若正方形绕点按逆时针方向旋转了,求旋转过程中,点运动的路径长.23.(10分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制出如下的统计图①和图②,请跟进相关信息,解答下列问题:(1)本次抽测的男生人数为,图①中m的值为;(2)求本次抽测的这组数据的平均数、众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,根据样本数据,估计该校350名九年级男生中有多少人体能达标.24.(10分)因式分解:(1)36﹣x2(2)ma2﹣2ma+m25.(12分)计算(1)计算:(2)26.小明的家离学校1600米,一天小明从家出发去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,正好在校门口追上他,已知爸爸的速度是小明速度的2倍,求小明的速度.

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据题意,是直角三角形,利用勾股定理解答即可.【详解】解:根据勾股定理,在中,故选A【点睛】本题考查勾股定理的运用,属于基础题型,熟练掌握勾股定理是解答本题的关键.2、C【解析】

先根据函数y随x的增大而增大可确定1−2k>1,再由函数的图象不经过第二象限可得图象与y轴的交点在y轴的负半轴上或原点,即−k≤1,进而可求出k的取值范围.【详解】解:∵一次函数y=(1−2k)x−k的函数值y随x的增大而增大,且此函数的图象不经过第二象限,∴1−2k>1,且−k≤1,解得,故选:C.【点睛】本题主要考查了一次函数图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1;一次函数y=kx+b图象与y轴的负半轴相交⇔b<1;一次函数y=kx+b图象过原点⇔b=1.3、A【解析】

由函数图象与函数表达式的关系可知,点A满足函数表达式,可将点A的坐标代入函数表达式,得到关于a、b的等式;再根据等式性质将关于a、b的等式进行适当的变形即可得出正确选项.【详解】∵点A(a,b)是正比例函数y=-2∴b=-2∴2a+3b=0.故选A【点睛】本题考查函数图象上点的坐标与函数关系式的关系,等式的基本性质,能根据等式的基本性质进行适当变形是解决本题的关键.4、B【解析】

根据算数平方根的意义解答即可.【详解】∵32=9,∴=3.故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.5、B【解析】

连BD,BM,BM交AC于N′,根据正方形的性质得到B点与D点关于AC对称,则有N′D+N′M=BM,利用两点之间线段最短得到BM为DN+MN的最小值,然后根据勾股定理计算即可.【详解】连BD,BM,BM交AC于N′,如图,∵四边形ABCD为正方形,∴B点与D点关于AC对称,∴N′D=N′B,∴N′D+N′M=BM,∴当N点运动到N′时,它到D点与M点的距离之和最小,最小距离等于MB的长,而BC=CD=6,DM=4,∴MC=2,∴BM=.故选:B.【点睛】此题考查轴对称-最短路线问题,勾股定理,正方形的性质,解题关键在于作辅助线.6、A【解析】∵点A(2,4)在函数y=kx-2的图象上,

∴2k-2=4,解得k=3,

∴此函数的解析式为:y=3x-2,

A选项:∵3×0-2=-2,∴此点在函数图象上,故本选项正确;

B选项:∵3×()-2=1.5≠0,∴此点在不函数图象上,故本选项错误;

C选项:∵3×(8)-2=22≠20,∴此点在不函数图象上,故本选项错误;

D选项:∵3×-2=-0.5≠,∴此点在不函数图象上,故本选项错误.

故选A.7、D【解析】根据题意对浆洗一遍的三个阶段的洗衣机内的水量分析得到水量与时间的函数图象,然后即可选择:每浆洗一遍,注水阶段,洗衣机内的水量从1开始逐渐增多;清洗阶段,洗衣机内的水量不变且保持一段时间;排水阶段,洗衣机内的水量开始减少,直至排空为1.纵观各选项,只有D选项图象符合.故选D.8、D【解析】

试题分析:菱形的四条边都相等,根据三角形中位线的性质可得原四边形的对角线一定相等.考点:菱形的性质【详解】因为菱形的各边相等,根据四边形的中位线的性质可得原四边形的对角线一定相等,故选D.9、B【解析】

逆用直角三角形的性质:30度角所对的直角边等于斜边的一半,即可得出答案.【详解】在Rt△ABC中,∵∠C=90°,AB=2BC,∴∠A=30°.故选B.【点睛】本题考查了直角三角形的性质.熟练应用直角三角形的性质:30度角所对的直角边等于斜边的一半是解题的关键.10、B【解析】

根据函数图像分析即可解题.【详解】由函数图像可知一次函数单调递减,正比例函数单调递增,将(k-m)x+b<0变形,即kx+b<mx,对应图像意义为一次函数图像在正比例函数图像下方,即交点P的右侧,∵点P的横坐标为1,∴即为所求解集.故选B【点睛】本题考查了一次函数与正比例函数的图像问题,数形结合的解题方法,中等难度,将不等式问题转化为图像问题是解题关键,11、C【解析】

四个小三角形的周长是两条对角线长与矩形周长的和,由此可求矩形周长.【详解】∵四边形ABCD是矩形,∴AC=BD.四个小三角形的周长=4AC+AD+DC+BC+BA,即40+矩形周长=68,所以矩形周长为1.故选:C.【点睛】本题主要考查了矩形的性质,矩形的对角线相等是解题的关键.12、C【解析】

函数经过点(0,3)和(1,-3),根据一次函数是直线,且这个函数y随x的增大而减小,即可确定.【详解】解:函数经过点(0,3)和(1,-3),则当-3<y<3时,x的取值范围是:0<x<1.故选:C.【点睛】认真体会一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键.二、填空题(每题4分,共24分)13、2.【解析】

设AP=x,PB=4,由等腰直角三角形得到DP与PC,然后在直角三角形DPC中利用勾股定理列出CD与x的关系,列出函数解题即可【详解】设AP=x,PB=4,由等腰直角三角形性质可得到DP=,CP=,又易知三角形DPC为直角三角形,所以DC2=DP2+PC2==,利用二次函数性质得到DC2的最小值为8,所以DC的最小值为,故填【点睛】本题主要考察等腰直角三角形的性质与二次函数的性质,属于中等难度题,本题关键在于能用x表示出DC的长度14、109【解析】

仔细观察图形的变化规律,利用规律解答即可.【详解】解:观察发现:第(1)个图中有1×2-1=1个小正方形;第(2)个图中有2×3-1=5个小正方形;第(3)个图中有3×4-1=11个小正方形;第(4)个图中有4×5-1=19个小正方形;…第(10)个图中有10×11-1=109个小正方形;故答案为109.【点睛】此题考查图形的变化规律,利用图形之间的联系,得出数字的运算规律解决问题.15、【解析】

本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额与购书数的函数关系式,再进行整理即可得出答案.【详解】解:根据题意得:,整理得:;则付款金额(单位:元)与购书数量(单位:本)之间的函数关系是;故答案为:.【点睛】本题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意的取值范围.16、【解析】分析:首先设出菱形边长为a,由AB=a,得出C、D的坐标,过点C作CE⊥AB,由勾股定理可得D点坐标.详解:设菱形边长为a,即AB=a,设C点坐标为(b,),∵BC∥x轴,∴D点纵坐标为:,∴D点横坐标为:,则x=-4b,∴D(-4b,),∵CD=a,∴4b+b=a,a=5b,过点C作CE⊥AB,则BE=a-AE=a-b=4b,BC=a=5b,由勾股定理:CE=3b,CE=,∴b²=1-=,b=,∴D.故答案为.点睛:本题考查了反比例函数图象上点的坐标特征,勾股定理等知识,解题的关键是设出菱形边长,利用反比例函数的性质表示出菱形各顶点的坐标,进而求解.17、【解析】

作PM⊥AD于M,交BC于N,进而得到四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,继而可证明S△PEB=S△PFD,然后根据勾股定理及完全平方公式可求,,进而求出矩形的周长.【详解】解:作PM⊥AD于M,交BC于N,

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴AM=PE=BN,AE=MP=DF,MD=PF=NC,BE=PN=FC,S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE,且S△DFP+S△PBE=9,∴,且,∴,即,.∵,,∴,,∴,∴矩形ABCD的周长=2=.故答案为:.【点睛】本题考查了矩形的性质,勾股定理,完全平方公式,三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.18、()【解析】

根据题意得出B点坐标变化规律,进而得出点B2018的坐标位置,进而得出答案.【详解】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,∴B(1,1),将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,B1(2,-2),B2(-4,-4),B3(-8,8),B4(16,16),∵2÷4=503…1,∴点B2与B1同在一个象限内,∵-4=-22,8=23,16=24,∴点B2(22,-22).故答案为:(22,-22).【点睛】此题主要考查了点的坐标变化规律,得出B点坐标变化规律是解题关键.三、解答题(共78分)19、(1);(2)5;(3)PA+PB的长度最短时,点P的坐标为(,0),PA+PB的最短长度为.【解析】

(1)直接利用两点之间距离公式直接求出即可;

(2)根据题意列式计算即可;

(3)利用轴对称求最短路线方法得出P点位置,进而求出PA+PB的最小值.【详解】(1)(1)∵A(2,3),B(-1,-2),

∴A,B两点间的距离为:;(2)∵M,N在平行于y轴的直线上,点M的纵坐标为-2,点N的纵坐标为3,

则M,N两点间的距离为3-(-2)=5;(3)如图,作点A关于x轴的对称点A′,连接A′B与x轴交于点P,此时PA+PB最短设A′B的解析式为y=kx+b将A′(0,-4),B(4,2)代入y=kx+b得解得∴直线设A′B的解析式为令y=0得∴P(0,).∵PA′=PA∴PA+PB=PA′+PB=A′B=∴PA+PB的长度最短时,点P的坐标为(,0),PA+PB的最短长度为.【点睛】考查了利用轴对称求最值问题以及两点之间距离公式,正确转化代数式为两点之间距离问题是解题关键.20、(1),(2),(3)存在,或【解析】

(1)求出B,C两点坐标,利用中点坐标公式计算即可.(2)如图1中,作点B关于直线m的对称点,连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.求出直线CB′的解析式可得点P坐标,作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小.(3)如图2中,由题意易知,,.分两种情形:①当时,设.②当时,分别构建方程即可解决问题.【详解】解:(1)∵直线与轴分别交于C、B两点,∴B(0,6),C(-8,0),∵CD=DB,∴D(-4,3).(2)如图1中,作点B关于直线m的对称点B′(-4,6),连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.∵C(-8,0),B′(-4,6),∴直线CB′的解析式为,∴P(-2,9),作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小.由题意点P向左平移4个单位,向下平移3个单位得到T,∴T(-6,6),∴PD′+D′C′+C′E=TC′+PT+C′E=PT+TE=5+6=1.∴PD′+D′C′+C′E的最小值为1.(3)如图2中,延长交BK′于J,设BK′交OC于R.∵B′S′=BS=4,S′K′=SK=,BK′平分∠CBO,所以,所以OR=3,tan∠OBR=,∵∠S′JK′=∠OBR=∠RBC,∴tan∠S′JK′==,∴,∵,∴,所以为的中点,,∴,由旋转的性质可知:,.①当时,设,,解得,所以.②当时,同理则有,整理得:,解得,所以,又因为,,所以直线为,此时在直线上,此时三角形不存在,故舍去.综上所述,满足条件的点N的坐标为或.【点睛】本题属于一次函数综合题,考查了一次函数的性质,轴对称最短问题,垂线段最短,等腰三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题.21、(1),(2).【解析】

(1)先由y与成正比例函数关系,y与x成反比例函数关系可设,,进而得到;再将x=1,y=3和x=-1,y=1分別代入得到再求解即可(2)将代入函数表达式计算,即可求出y的值【详解】(1)设,,,,把,代入得:①,把代入得:②,①,②联立,解得:,,即关于的函数关系式为,(2)把代入,解得.【点睛】此题考查待定系数法求正比例函数解析式,待定系数法求一次函数解析式,待定系数法求反比例函数解析式,解题关键在于设,22、(1)见详解;(2);.【解析】

(1)由正方形的性质得出AD=AB,AG=AE,∠BAD=∠EAG=90°,由∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,推出∠BAE=∠DAG,由SAS即可证得△DAG≌△BAE;(2)①由AB=2,AE=1,由勾股定理得AF=AE=,易证△ABF是等腰三角形,由AE=EF,则直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,则OE=OA=,由勾股定理得OB=,由cos∠ABO=,cos∠ABH=,求得BH=,由勾股定理得AH==,则DH=AD−AH=2−,由∠DHP=∠BHA,∠BAH=∠DPH=90°,证得△BAH∽△DPH,得出,即可求得DP;②由△DAG≌△BAE,得出∠ABE=∠ADG,由∠BPD=∠BAD=90°,则点P的运动轨迹为以BD为直径的,由正方形的性质得出BD=AB=2,由正方形AEFG绕点A按逆时针方向旋转了60°,得出∠BAE=60°,由AB=2AE,得出∠BEA=90°,∠ABE=30°,B、E、F三点共线,同理D、F、G三点共线,则P与F重合,得出∠ABP=30°,则所对的圆心角为60°,由弧长公式即可得出结果.【详解】解答:(1)证明:在正方形ABCD和正方形AEFG中,AD=AB,AG=AE,∠BAD=∠EAG=90°,∵∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,∴∠BAE=∠DAG,在△DAG和△BAE中,,∴△DAG≌△BAE(SAS);∴BE=DG;(2)解:①∵AB=2AE=2,∴AE=1,由勾股定理得,AF=AE=,∵BF=BC=2,∴AB=BF=2,∴△ABF是等腰三角形,∵AE=EF,∴直线BE是AF的垂直平分线,设BE的延长线交AF于点O,交AD于点H,如图3所示:则OE=OA=,∴OB=,∵cos∠ABO=,cos∠ABH=,∴BH=,AH==,∴DH=AD−AH=2−,∵∠DHP=∠BHA,∠BAH=∠DPH=90°,∴△BAH∽△DPH,∴,即∴DP=;②∵△DAG≌△BAE,∴∠ABE=∠ADG,∵∠BPD=∠BAD=90°,∴点P的运动轨迹为以BD为直径的,BD=AB=2,∵正方形AEFG绕点A按逆时针方向旋转了60°,∴∠BAE=60°,∵AB=2AE,∴∠BEA=90°,∠ABE=30°,∴B、E、F三点共线,同理D、F、G三点共线,∴P与F重合,∴∠ABP=30°,∴所对的圆心角为60°,∴旋转过程中点P运动的路线长为:.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论