版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣42.如图,被笑脸盖住的点的坐标可能是()A. B. C. D.3.把中根号外的(a-1)移入根号内,结果是()A. B. C. D.4.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)5.已知点(-2,y1),(1,0),(3,y2)都在一次函数y=kx-2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y16.下列曲线中不能表示是的函数的是A. B.C. D.7.已知正比例函数的图象如图所示,则一次函数y=mx+n图象大致是()A. B.C. D.8.一元二次方程的一次项系数为()A.1 B. C.2 D.-29.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论①(BE+CF)=BC,②,③AD·EF,④AD≥EF,⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个10.如图,把线段AB经过平移得到线段CD,其中A,B的对应点分别为C,D.已知A(﹣1,0),B(﹣2,3),C(2,1),则点D的坐标为()A..(1,4) B..(1,3) C..(2,4) D..(2,3)11.以下各点中,在一次函数的图像上的是()A.(2,4) B.(-1,4) C.(0,5) D.(0,6)12.矩形的边长是,一条对角线的长是,则矩形的面积是()A. B. C.. D.二、填空题(每题4分,共24分)13.一组数据1,3,1,5,2,a的众数是a,这组数据的中位数是_________.14.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.15.已知α、β是一元二次方程x2﹣2019x+1=0的两实根,则代数式(α﹣2019)(β﹣2019)=_____.16.小明在计算内角和时,不小心漏掉了一个内角,其和为1160,则漏掉的那个内角的度数是_____________.17.甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数相同,射击成绩的方差分别为S甲2=5,S乙2=3.5,则射击成绩比较稳定的是_____(填“甲”或“乙“).18.在实数范围内分解因式:5-x2=_____.三、解答题(共78分)19.(8分)在平面直角坐标系中,直线l1:y=x+5与反比例函数y=(k≠0,x>0)图象交于点A(1,n);另一条直线l2:y=﹣2x+b与x轴交于点E,与y轴交于点B,与反比例函数y=(k≠0,x>0)图象交于点C和点D(,m),连接OC、OD.(1)求反比例函数解析式和点C的坐标;(2)求△OCD的面积.20.(8分)抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20151212B库2520108(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?21.(8分)先化简,再求值:,其中x=+1.22.(10分)某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:完成作业单元测试期末考试小张709080小王6075(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;(2)若按完成作业、单元检测、期末考试三项成绩按的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?23.(10分)在梯形中,,,,,,点E、F分别在边、上,,点P与在直线的两侧,,,射线、与边分别相交于点M、N,设,.(1)求边的长;(2)如图,当点P在梯形内部时,求关于x的函数解析式,并写出定义域;(3)如果的长为2,求梯形的面积.24.(10分)如图1,四边形ABCD是正方形,AB=4,点G在BC边上,BG=3,DE⊥AG于点E,BF⊥AG于点F.(1)求BF和DE的长;(2)如图2,连接DF、CE,探究并证明线段DF与CE的数量关系与位置关系.25.(12分)如图,△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),在正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移4个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C,使△A2B2C与△ABC位似,且△A2B2C与△ABC的位似比为2:1,并直接写出点B2的坐标.26.再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示;MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出DE,使DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:直线l与y轴的交点(0,-3),而y=a为平行于x轴的直线,观察图象可得,当a<-3时,直线l与y=a的交点在第四象限.故选D考点:数形结合思想,一次函数与一次方程关系2、C【解析】
判断出笑脸盖住的点在第三象限,再根据第三象限内点的坐标特征解答.【详解】由图可知,被笑脸盖住的点在第三象限,(5,2),(−5,2),(−5,−2),(5,−2)四个点只有(−5,−2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3、C【解析】
先根据二次根式有意义的条件求出a-1<0,再根据二次根式的性质把根号外的因式平方后移入根号内,即可得出答案.【详解】∵要是根式有意义,必须-≥0,∴a-1<0,∴(a-1)=-,故选C.【点睛】本题考查了二次根式的性质的应用,注意:当m≥0时,m=,当m≤0时,m=-.4、A【解析】
关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(-1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.5、B【解析】
先根据点(1,0)在一次函数y=kx﹣1的图象上,求出k=1>0,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论.【详解】∵点(1,0)在一次函数y=kx﹣1的图象上,∴k﹣1=0,∴k=1>0,∴y随x的增大而增大.∵﹣1<1<3,∴y1<0<y1.故选B.【点睛】本题考查了一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质.6、D【解析】
根据函数的定义即可判断.【详解】因为是的函数时,只能一个x对应一个y值,故D错误.【点睛】此题主要考查函数的定义,解题的关键是熟知函数图像的性质.7、C【解析】
利用正比例函数的性质得出>0,根据m、n同正,同负进行判断即可.【详解】.解:由正比例函数图象可得:>0,mn同正时,y=mx+n经过一、二、三象限;mn同负时,过二、三、四象限,故选C.【点睛】本题考查了正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.8、D【解析】
根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0.这种形式叫一元二次方程的一般形式.a叫做二次项系数;b叫做一次项系数;c叫做常数项可得答案.【详解】解:一元二次方程,则它的一次项系数为-2,
所以D选项是正确的.【点睛】本题考查的是一元二次方程,熟练掌握一次项系数是解题的关键.9、C【解析】
解:∵Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∴AD=DC,∠EAD=∠C=45°,∠EDA=∠MDN-∠ADN=90°-∠ADN=∠FDC.∴△EDA≌△FDC(ASA).∴AE=CF.∴BE+CF=BE+AE=AB.在Rt△ABC中,根据勾股定理,得AB=BC.∴(BE+CF)=BC.∴结论①正确.设AB=AC=a,AE=b,则AF=BE=a-b.∴.∴.∴结论②正确.如图,过点E作EI⊥AD于点I,过点F作FG⊥AD于点G,过点F作FH⊥BC于点H,ADEF相交于点O.∵四边形GDHF是矩形,△AEI和△AGF是等腰直角三角形,∴EO≥EI(EF⊥AD时取等于)=FH=GD,OF≥GH(EF⊥AD时取等于)=AG.∴EF=EO+OF≥GD+AG=AD.∴结论④错误.∵△EDA≌△FDC,∴.∴结论③错误.又当EF是Rt△ABC中位线时,根据三角形中位线定理知AD与EF互相平分.∴结论⑤正确.综上所述,结论①②⑤正确.故选C.10、A【解析】
根据点A、C的坐标确定出平移规律,然后根据规律求解点D的坐标即可.【详解】∵A(﹣1,0)的对应点C的坐标为(2,1),∴平移规律为横坐标加3,纵坐标加1,∵点B(﹣2,3)的对应点为D,∴D的坐标为(1,4).故选A.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.11、D【解析】
分别将各选项中的点代入一次函数解析式进行验证.【详解】A.当x=2时,,故点(2,4)不在一次函数图像上;B.当x=-1时,,故点(-1,4)不在一次函数图像上;C.当x=0时,,故点(0,5)不在一次函数图像上;D.当x=0时,,故点(0,6)在一次函数图像上;故选D.【点睛】本题考查判断点是否在函数图像上,将点坐标代入函数解析式验证是解题的关键.12、C【解析】
根据勾股定理求出矩形的另一条边的长度,即可求出矩形的面积.【详解】由题意及勾股定理得矩形另一条边为==4所以矩形的面积=44=16.故答案选C.【点睛】本题考查的知识点是勾股定理,解题的关键是熟练的掌握勾股定理.二、填空题(每题4分,共24分)13、1.1,2,2.1.【解析】分析:一组数据中出现次数最多的数据叫做众数,一组数据中众数不止一个,由此可得出a的值,将数据从小到大排列可得出中位数.详解:1,3,1,1,2,a的众数是a,∴a=1或2或3或1,将数据从小到大排列分别为:1,1,1,2,3,1,1,1,2,2,3,1,1,1,2,3,3,1,1,1,2,3,1,1.故中位数分别为:1.1,2,2.1.故答案为:1.1,2,2.1.点睛:本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,属于基础题.14、1.【解析】
试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=×10=1.考点:1.勾股定理;2.直角三角形斜边上的中线性质.15、1【解析】
根据根与系数的关系可得:α+β=2019,αβ=1,将其代入(α﹣2019)(β﹣2019)=αβ-2019(α+β)+中即可求出结论.【详解】∵α、β是一元二次方程x2﹣2019x+1=0的两实根,∴α+β=2019,αβ=1,∴(α﹣2019)(β﹣2019)=αβ-2019(α+β)+=1.故答案为1.【点睛】本题考查了一元二次方程根与系数的关系,熟练运用一元二次方程根与系数的关系是解决问题的关键.16、100°【解析】
根据n边形的内角和是(n-2)•180°,少计算了一个内角,结果得1160,可以解方程(n-2)•180°≥1160,由于每一个内角应大于0°而小于180度,则多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.【详解】解:设多边形的边数是n.
依题意有(n-2)•180°≥1160°,解得:则多边形的边数n=9;
九边形的内角和是(9-2)•180=1260度;
则未计算的内角的大小为1260-1160°=100°.
故答案为:100°【点睛】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.17、乙.【解析】
根据方差反应了数据的波动情况,即可完成作答。【详解】解:因为S甲2=5>S乙2=3.5,即乙比较稳定,故答案为:乙。【点睛】本题考查了方差在数据统计中的作用,即方差是反映数据波动大小的量。18、(+x)(-x)【解析】
理解实数范围内是要运算到无理数为止,即可解题.【详解】解:5-x2=(+x)(-x)【点睛】本题考查了因式分解,属于简单题,注意要求是实数范围内因式分解是解题关键.三、解答题(共78分)19、(1)y=,点C(6,1);(2).【解析】
(1)点A(1,n)在直线l1:y=x+5的图象上,可求点A的坐标,进而求出反比例函数关系式,点D在反比例函数的图象上,求出点D的坐标,从而确定直线l2:y=﹣2x+b的关系式,联立求出直线l2与反比例函数的图象的交点坐标,确定点C的坐标,(2)求出直线l2与x轴、y轴的交点B、E的坐标,利用面积差可求出△OCD的面积.【详解】解:(1)∵点A(1,n)在直线l1:y=x+5的图象上,∴n=6,∴点A(1,6)代入y=得,k=6,∴反比例函数y=,当x=时,y=12,∴点D(,12)代入直线l2:y=﹣2x+b得,b=13,∴直线l2:y=﹣2x+13,由题意得:解得:,,∴点C(6,1)答:反比例函数解析式y=,点C的坐标为(6,1).(2)直线l2:y=﹣2x+13,与x轴的交点E(,0)与y轴的交点B(0,13)∴S△OCD=S△BOE﹣S△BOD﹣S△OCE答:△OCD的面积为.【点睛】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.20、(1)y=-30x+39200(0≤x≤1);(2)从甲库运往A库1吨粮食,往B库运送30吨粮食,从乙库运往A库0吨粮食,从乙库运往B库80吨粮食时,总运费最省为37100元【解析】试题分析:弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.试题解析:(1)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100-x)吨,乙库运往A库(1-x)吨,乙库运到B库(10+x)吨.则,解得:0≤x≤1.y=12×20x+10×25(100-x)+12×15(1-x)+8×20×[110-(100-x)]=-30x+39200其中0≤x≤1(2)上述一次函数中k=-30<0∴y随x的增大而减小∴当x=1吨时,总运费最省最省的总运费为:-30×1+39200=37100(元)答:从甲库运往A库1吨粮食,往B库运送30吨粮食,从乙库运往A库0吨粮食,从乙库运往B库80吨粮食时,总运费最省为37100元.21、,【解析】试题分析:根据分式混合运算的法则先算括号里面的,再算除法,最后把x的值代入进行计算即可.试题解析:原式===,当x=+1时,原式=.22、(1)80;(2)①81;②85.【解析】
(1)直接利用算术平均数的定义求解可得;
(2)根据加权平均数的定义计算可得.【详解】解:(1)小张的期末评价成绩为(分;(2)①小张的期末评价成绩为(分;②设小王期末考试成绩为分,根据题意,得:,解得,小王在期末(期末成绩为整数)应该最少考85分才能达到优秀.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.23、(1)6;(2)y=-3x+10(1≤x<);(2)或32【解析】
(1)如下图,利用等腰直角三角形DHC可得到HC的长度,从而得出HB的长,进而得出AD的长;(2)如下图,利用等腰直角三角形的性质,可得PQ、PR的长,然后利用EB=PQ+PR得去x、y的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P在梯形内,一种是在梯形外,分别根y的值求出x的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D作BC的垂线,交BC于点H∵∠C=45°,DH⊥BC∴△DHC是等腰直角三角形∵四边形ABCD是梯形,∠B=90°∴四边形ABHD是矩形,∴DH=AB=8∴HC=8∴BH=BC-HC=6∴AD=6(2)如下图,过点P作EF的垂线,交EF于点Q,反向延长交BC于点R,DH与EF交于点G∵EF∥AD,∴EF∥BC∴∠EFP=∠C=45°∵EP⊥PF∴△EPF是等腰直角三角形同理,还可得△NPM和△DGF也是等腰直角三角形∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x∵PQ⊥EF,∴PQ=QE=QF∴PQ=同理,PR=∵AB=8,∴EB=8-x∵EB=QR∴8-x=化简得:y=-3x+10∵y>0,∴x<当点N与点B重合时,x可取得最小值则BC=NM+MC=NM+EF=-3x+10+,解得x=1∴1≤x<(3)情况一:点P在梯形ABCD内,即(2)中的图形∵MN=2,即y=2,代入(2)中的关系式可得:x==AE∴情况二:点P在梯形ABCD外,图形如下:与(2)相同,可得y=3x-10则当y=2时,x=4,即AE=4∴【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x的取值范围,需要一定的空间想象能力.24、(1);(2)DF=CE,DF⊥CE.理由见解析;【解析】分析:(1)如图1,先利用勾股定理计算出AG==5,再利用面积法和勾股定理计算出然后证明△ABF≌△DAE,得到DE=AF=;
(2)作CH⊥DE于H,如图2,先利用△ABF≌△DAE,得到则与(1)的证明方法一样可得△CDH≌△DAE,则于是可判断EH=EF,接着证明△DEF≌△CHE,所以DF=CE,∠EDF=∠HCE,然后利用三角形内角和得到从而判断DF⊥CE.详解:(1)如图1,∵四边形ABCD是正方形,∴,∵DE⊥AG,BF⊥AG,∴在Rt△ABG中,AG==5,∵∴∴AF===,∵∴∠ABF=∠DAE,在△ABF和△DAE中∴△ABF≌△DAE,∴DE=AF=;(2)DF=CE,DF⊥CE.理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《富集在海水中的元素-氯》课堂教学实录
- 北师大版七年级语文上册全册完整教案及教学计划
- 小学语文二年级上册总复习之全册词语表
- DB11T 1064-2014 数字化城市管理信息系统地理空间数据获取与更新
- 阀门技术规格书
- 天津市滨海新区田家炳中学2024-2025学年高二年级上学期期中考试语文试题(含答案)
- 江苏省宿迁市沭阳县2024-2025学年八年级上学期11月期中物理试题(含答案)
- 医用去污剂产业深度调研及未来发展现状趋势
- 假体的安装调试行业经营分析报告
- 台钟产业运行及前景预测报告
- 全麻术后病人的护理查房
- 数字化供电所技术方案
- 《音乐鉴赏》课程中的思政元素:音乐与情感的共鸣
- 品牌提升方案
- 员工关怀实施方案课件
- 交警指挥系统方案GIS
- 助产专业大学生职业生涯规划
- 国内ERCP操作指南
- 肺动脉高压患者查房
- 苍蝇小子课件
- 文华财经“麦语言”函数手册
评论
0/150
提交评论