2023届湖南株洲市景炎学校数学八年级第二学期期末教学质量检测模拟试题含解析_第1页
2023届湖南株洲市景炎学校数学八年级第二学期期末教学质量检测模拟试题含解析_第2页
2023届湖南株洲市景炎学校数学八年级第二学期期末教学质量检测模拟试题含解析_第3页
2023届湖南株洲市景炎学校数学八年级第二学期期末教学质量检测模拟试题含解析_第4页
2023届湖南株洲市景炎学校数学八年级第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.不能确定2.一个正多边形的内角和是1440°,则它的每个外角的度数是()A.30°B.36°C.45°D.60°3.数据3,7,2,6,6的中位数是()A.6 B.7 C.2 D.34.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:15.如图所示,四边形OABC是正方形,边长为6,点A、C分别在x轴、y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上一动点,则PA+PD的最小值为()A.2 B. C.4 D.66.已知关于的方程是一元二次方程,则的取值范围是()A. B. C. D.任意实数7.如图,矩形纸片ABCD中,BC=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则ΔABC的面积为(A.16cm2 B.20cm28.如图,在△ABC中,点D、E分别是边AB、AC上的点,且DE∥BC,若,DE=3,则BC的长度是()A.6 B.8 C.9 D.109.如果一个直角三角形的两边分别是6,8,那么斜边上的中线是()A.4B.5C.4或5D.3或510.正六边形的每个内角度数为A. B. C. D.11.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1 B.2 C.3 D.412.一次函数y=-2x-1的图象不经过()象限A.第一 B.第二 C.第三 D.第四二、填空题(每题4分,共24分)13.关于的方程无解,则的值为________.14.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是_____(只需添加一个即可)15.一个有进水管与出水管的容器,从某时刻开始,2min内只进水不出水,在随后的4min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则每分钟出水____________升.16.如图,已知直线、相交于点,平分,如果,那么__________度.17.平行四边形的面积等于,两对角线的交点为,过点的直线分别交平行四边形一组对边、于点、,则四边形的面积等于________。18.如图是甲、乙两人10次射击成绩的条形统计图,则甲、乙两人成绩比较稳定的是________.三、解答题(共78分)19.(8分)如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.20.(8分)在某市举办的“读好书,讲礼仪”活动中,东华学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)七(1)班全体同学所捐献图书的中位数和众数分别是多少?21.(8分)阅读下列题目的解题过程:已知a、b、c为ΔABC的三边,且满足解:∵a2∴c2(∴c2∴ΔABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)该步正确的写法应是:;(3)本题正确的结论为:.22.(10分)如图,平行四边形ABCD的两条对角线相交于O,且AC平分∠DAB(1)求证:四边形ABCD是菱形(2)若AC=16,BD=12,试求点O到AB的距离.23.(10分)如图1,正方形中,点、的坐标分别为,,点在第一象限.动点在正方形的边上,从点出发沿匀速运动,同时动点以相同速度在轴上运动,当点运动到点时,两点同时停止运动,设运动时间为秒.当点在边上运动时,点的横坐标(单位长度)关于运动时间(秒)的函数图象如图2所示.(1)正方形边长_____________,正方形顶点的坐标为__________________;(2)点开始运动时的坐标为__________,点的运动速度为_________单位长度/秒;(3)当点运动时,点到轴的距离为,求与的函数关系式;(4)当点运动时,过点分别作轴,轴,垂足分别为点、,且点位于点下方,与能否相似,若能,请直接写出所有符合条件的的值;若不能,请说明理由.24.(10分)一只不透明的袋子中装有3个红球、2个黄球和1个白球,每个球除颜色外都相同,将球摇匀,从中任意摸出1个球.(1)摸到的球的颜色可能是______;(2)摸到概率最大的球的颜色是______;(3)若将每个球都编上号码,分别记为1号球(红)、2号球(红)、3号球(红)、4号球(黄)、5号球(黄)、6号球(白),那么摸到1~6号球的可能性______(填相同或者不同);(4)若在袋子中再放一些这样的黄球,从中任意摸出1个球,使摸到黄球的概率是,则放入的黄球个数是______.25.(12分)某商家预测“华为P30”手机能畅销,就用1600元购进一批该型号手机壳,面市后果然供不应求,又购进6000元的同种型号手机壳,第二批所购买手机壳的数量是第一批的3倍,但进货单价比第一批贵了2元.(1)第一批手机壳的进货单价是多少元?(2)若两次购进于机壳按同一价格销售,全部传完后,为使得获利不少于2000元,那么销售单价至少为多少?26.如图,点为轴负半轴上的一个点,过点作轴的垂线,交函数的图像于点,交函数的图像于点,过点作轴的平行线,交于点,连接.(1)当点的坐标为(–1,0)时,求的面积;(2)若,求点的坐标;(3)连接和.当点的坐标为(,0)时,的面积是否随的值的变化而变化?请说明理由.

参考答案一、选择题(每题4分,共48分)1、B【解析】

根据根的判别式判断即可.【详解】∵,∴该方程有两个相等的实数根,故选:B.【点睛】此题考查一元二次方程的根的判别式,熟记根的三种情况是解题的关键.2、B【解析】

先设该多边形是n边形,根据多边形内角和公式列出方程,求出n的值,即可求出多边形的边数,再根据多边形的外角和是360°,利用360除以边数可得外角度数.【详解】设这个多边形的边数为n,则(n-2)×180°=1440°,解得n=1.外角的度数为:360°÷1=36°,故选B.【点睛】此题考查了多边形的内角与外角,关键是根据多边形的内角和公式(n-2)•180°和多边形的外角和都是360°进行解答.3、A【解析】

将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】解:将数据小到大排列2,3,6,6,7,所以中位数为6,故选A.【点睛】本题考查了中位数,正确理解中位数的意义是解题的关键.4、B【解析】

可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.5、A【解析】试题解析:连接CD,交OB于P.则CD就是PD+PA和的最小值.

∵在直角△OCD中,∠COD=90°,OD=2,OC=6,

∴CD=,

∴PD+PA=PD+PC=CD=2.

∴PD+PA和的最小值是2.

故选A.6、A【解析】

利用一元二次方程的定义求解即可.【详解】解:∵关于x的方程是一元二次方程,∴m+1≠0,即m≠−1,故选:A.【点睛】此题主要考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.7、A【解析】

由矩形的性质可得∠B=90°,AB∥CD,可得∠DCA=∠CAB,由折叠的性质可得BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB=∠DCA,可得AO=OC=5cm,由勾股定理可求OE的长,即可求△ABC的面积.【详解】解:∵四边形ABCD是矩形∴∠B=90°,AB∥CD∴∠DCA=∠CAB∵把纸片ABCD沿直线AC折叠,点B落在E处,∴BC=EC=4cm,AB=AE,∠E=∠B=90°,∠EAC=∠CAB,∴∠DCA=∠EAC∴AO=OC=5cm∴OE=∴AE=AO+OE=8cm,∴AB=8cm,∴△ABC的面积=12×AB×BC=16cm2故选:A.【点睛】本题考查了翻折变换,矩形的性质,勾股定理,熟练运用折叠的性质是本题的关键.8、C【解析】根据平行线分线段成比例的性质,由,可得,根据相似三角形的判定与性质,由DE∥BC可知△ADE∽△ABC,可得,由DE=3,求得BC=9.故选:C.9、C【解析】当一个直角三角形的两直角边分别是6,8时,由勾股定理得,斜边==10,则斜边上的中线=×10=5,当8是斜边时,斜边上的中线是4,故选C.10、C【解析】

利用多边形的内角和为求出正六边形的内角和,再结合其边数即可求解.【详解】根据多边形的内角和定理可得:正六边形的每个内角的度数.故选:C.【点睛】本题考查了多边形的内角和公式,利用多边形的内角和公式即可解决问题.11、B【解析】

根据正方形EFGH的面积=正方形ABCD的面积﹣4S△ABE=4,求4的算术平方根即可得到结论.【详解】解:∵正方形EFGH的面积=正方形ABCD的面积﹣4S△ABE=102﹣4×24=4,∴正方形EFGH的边长=2,故选:B.【点睛】本题考查了正方形的面积,三角形的面积,正确的识别图形是解题的关键.12、A【解析】

先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【详解】∵一次函数y=−2x−1中,k=−2<0,b=−1<0,∴此函数的图象经过二、三、四象限,故选A.【点睛】此题考查一次函数的性质,解题关键在于判断出k、b的符号二、填空题(每题4分,共24分)13、-1.【解析】

分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【详解】解:去分母得:2x-1=x+1+m,

整理得:x=m+2,

当m+2=-1,即m=-1时,方程无解.

故答案为:-1.【点睛】本题考查分式方程的解,分式方程无解分为最简公分母为0的情况与分式方程转化为的整式方程无解的情况.14、∠ABC=90°或AC=BD.【解析】试题分析:此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为∠ABC=90°.点睛:本题主要考查正方形的判定.熟练运用正方形判定定理是解题的关键.15、7.1【解析】

出水量根据后4分钟的水量变化求解.【详解】解:根据图象,每分钟进水20÷2=10升,设每分钟出水m升,则10×(6-2)-(6-2)m=30-20,解得:m=7.1.故答案为:7.1【点睛】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.16、1【解析】

先根据角平分线的定义,求出∠BOC的度数,再根据邻补角的和等于11°求解即可.【详解】解:∵平分,,∴,∴,故答案为:1.【点睛】本题考查了角平分线的定义以及邻补角的性质,属于基础题.17、【解析】

根据“过平行四边形对角线的交点的直线将平行四边形等分为两部分”解答即可.【详解】如图平行四边形ABCD,∵四边形ABCD是平行四边形,∴OD=OB,OA=OC,则可得:△DF0≌△BEO,△ADO≌△CBO,△CF0≌△AEO,∴直线l将四边形ABCD的面积平分.∵平行四边形ABCD的面积等于10cm2,∴四边形AEFD的面积等于5cm2,故答案为:5cm2【点睛】本题考查了中心对称,全等三角形的判定与性质,解答本题的关键在于举例说明,利用全等的知识解决.18、乙【解析】∵通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,∴甲的方差大于乙的方差,∴乙的成绩比较稳定.故答案为乙.点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题(共78分)19、证明:(1)见解析(2)见解析【解析】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠ABF=∠ECF.∵EC=DC,∴AB=EC.在△ABF和△ECF中,∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,∴△ABF≌△ECF.(2)证法一:由(1)知AB=EC,又AB∥EC,∴四边形ABEC是平行四边形.∴AF=EF,BF=CF.∵四边形ABCD是平行四边形,∴∠ABC=∠D,又∵∠AFC=2∠D,∴∠AFC=2∠ABC.∵∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF.∴FA=FB.∴FA=FE=FB=FC,∴AE=BC.∴□ABEC是矩形.证法二:由(1)知AB=EC,又AB∥EC,∴四边形ABEC是平行四边形.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠BCE.又∵∠AFC=2∠D,∴∠AFC=2∠BCE.∵∠AFC=∠FCE+∠FEC,∴∠FCE=∠FEC.∴∠D=∠FEC.∴AE=AD.又∵CE=DC,∴AC⊥DE,即∠ACE=90°.∴□ABEC是矩形.20、(1)因为捐2本的人数是15人,占30%,所以该班人数为1530%(2)根据题意知,捐4本的人数为:50-(10+15+7+5)=1.(如图)(3)七(1)班全体同学所捐献图书的中位数是2+42【解析】(1)根据捐2本的人数是15人,占30%,即可求得总人数;(2)首先根据总人数和条形统计图中各部分的人数计算捐4本的人数,进而补全条形统计图;(3)根据中位数和众数的定义解答21、故答案为:(1)③;(2)当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.【解析】

(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以a2-b2,没有考虑(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【详解】(1)上述解题过程,从第③步开始出现错误;(2)正确的写法为:c2(a2−b2)=(a2+b2)(a2−b2),移项得:c2(a2−b2)−(a2+b2)(a2−b2)=0,因式分解得:(a2−b2)[c2−(a2+b2)]=0,则当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形。故答案为:(1)③;(2)当a2−b2=0时,a=b;当a2−b2≠0时,a2+b2=c2;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形【点睛】此题考查勾股定理的逆定理,因式分解的应用,解题关键在于掌握运算法则.22、(1)证明见解析;(2)4.8【解析】

(1)由平行四边形的对边平行得∠DAC=∠BCA,由角平分线的性质得∠DAC=∠BAC,即可知∠BCA=∠BAC,从而得AB=BC,即可得证;(2)由菱形的对角线互相垂直且平分得AO=8、BO=6且∠AOB=90°,利用勾股定理得AB=10,根据S△AOB=AB•h=AO•BO即可得答案.【详解】(1)∵平行四边形ABCD,∴AD//BC,∴∠DAC=∠BCA,∵AC平分∠DAB,∴∠CAD=∠BAC,∴∠ACB=∠BAC,∴AB=BC,∴ABCD是菱形;(2)∵四边形ABCD是菱形,AC=16,BD=12,所以AO=8,BO=6,∵∠AOB=90°,∴AB==10,设O点到AB的距离为h,则S△AOB=AB•h=AO•BO,即:×10h=×8×6,解得h=4.8,所以O点到AB的距离为4.8.【点睛】本题考查了平行四边形的性质,菱形的判定与性质及勾股定理,熟练掌握菱形的判定与性质是见本题的关键.23、(3)30,(35.2);(2)(3,0),3;(3)d=t﹣5;(5)t的值为3s或s或s.【解析】

(3)过点B作BH⊥y轴于点H,CF⊥HB交HB的延长线于点F交x轴于G.利用全等三角形的性质解决问题即可.(2)根据题意,易得Q(3,0),结合P、Q得运动方向、轨迹,分析可得答案;(3)分两种情形:①如图3﹣3中,当0<t≤30时,作PN⊥x轴于N,交HF于K.②如图3﹣2中,当30<t≤20时,作PN⊥x轴于N,交HF于K.分别求解即可解决问题.(5)①如图5﹣3中,当点P在线段AB上时,有两种情形.②如图5﹣2中,当点P在线段BC上时,只有满足时,△APM∽△PON,利用(3)中结论构建方程即可解决问题.【详解】解:(3)过点B作BH⊥y轴于点H,CF⊥HB交HB的延长线于点F交x轴于G.∵∠ABC=90°=∠AHB=∠BFC∴∠ABH+∠CBF=90°,∠ABH+∠BAH=90°,∴∠BAH=∠CBF,∵AB=BC,∴△ABH≌△BCF.∴BH=CF=8,AH=BF=3.∴AB==30,HF=35,∴OG=FH=35,CG=8+5=2.∴所求C点的坐标为(35,2).故答案为30,(35,2)(2)根据题意,易得Q(3,0),点P运动速度每秒钟3个单位长度.故答案为(3,0),3.(3)①如图3﹣3中,当0<t≤30时,作PN⊥x轴于N,交HF于K.易知四边形OHKN是矩形,可得OH=KN=5,∵PK∥AH,∴,∴,∴PK=(30﹣t),∴d=PK+KN=﹣t+30.②如图3﹣2中,当30<t≤20时,作PN⊥x轴于N,交HF于K.同法可得PK=(t﹣30),∴d=PK+KN=t﹣5.(5)①如图5﹣3中,当点P在线段AB上时,有两种情形:当时,△APM与△OPN相似,可得,解得t=3.当时,△APM与△OPN相似,可得,解得t=.②如图5﹣2中,当点P在线段BC上时,只有满足时,△APM∽△PON,可得:∠OPN=∠PAM=∠AOP,∵PM⊥OA,∴AM=OM=PN=5,由(3)②可知:5=t﹣5,解得t=.综上所述,拇指条件的t的值为3s或s或s.【点睛】本题属于相似形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形或全等三角形解决问题,需要利用参数构建方程解决问题,属于中考压轴题.24、(1)红、黄、白;(2)红色;(3)相同;(1)1【解析】

(1)根据袋子中装有3个红球、2个黄球和1个白球,每个球除颜色外都相同,可知摸到的球的颜色可能是红、黄、白;(2)哪种球的数量最多,摸到那种球的概率就最大;(3)根据概率公式可得答案;(1)设放入的黄球个数是x,根据摸到黄球的概率是,列出关于x的方程,解方程即可.【详解】解:(1)根据题意,可得摸到的球的颜色可能是红、黄、白.故答案为红、黄、白;(2)根据题意,可得摸到概率最大的球的颜色是红色.故答案为红色;(3)∵将每个球都编上号码,分别记为1号球(红)、2号球(红)、3号球(红)、1号球(黄)、5号球(黄)、6号球(白),∴摸到1~6号球的概率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论