版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形2.用反证法证明命题:“四边形中至少有一个角是钝角或直角”时,首先应该假设这个四边形中()A.有一个角是钝角或直角 B.每一个角都是钝角C.每一个角都是直角 D.每一个角都是锐角3.在平行四边形ABCD中,∠A=55°,则∠D的度数是()A.105° B.115° C.125° D.55°4.如图,在平面直角坐标系中,等边△OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为()A.(4,23) B.(3,3) C.(4,3) D.(3,2)5.直线l是以二元一次方程的解为坐标所构成的直线,则该直线不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=20,CE=15,CF=7,AF=24,则BE的长为()A.10 B. C.15 D.7.如图,已知,点D、E、F分别是、、的中点,下列表示不正确的是()A. B. C. D.8.如图,在△ABC中,∠ACB=90°,CE⊥AB,垂足为E,点D是边AB的中点,AB=20,S△CAD=30,则DE的长度是()A.6 B.8 C. D.99.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A. B. C. D.10.的算术平方根是()A. B.﹣ C. D.±二、填空题(每小题3分,共24分)11.关于x的一元二次方程x2+3x+m﹣2=0有一个根为1,则m的值等于______.12.比较大小:__________.(用不等号连接)13.分解因式:________.14.对分式和进行通分,它们的最简公分母是________.15.从一副扑克牌中任意抽取1张:①这张牌是“A”;②这张牌是“红心”;③这张牌是“大王”.其中发生的可能性最大的事件是_____.(填序号)16.某班有48名同学,在一次英语单词竞赛成绩统计中,成绩在81~90这一分数段的人数所占的频率是0.25,那么成绩在这个分数段的同学有_________名.17.(1)____________;(2)=____________.18.如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(m,3),AB⊥x轴于点B,平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数解析式是___.三、解答题(共66分)19.(10分)如图,四边形ABCD是平行四边形,分别以AB,CD为边向外作等边△ABE和△CDF,连接AF,CE.求证:四边形AECF为平行四边形.20.(6分)已知一次函数.(1)当m取何值时,y随x的增大而减小?(2)当m取何值时,函数的图象过原点?21.(6分)如图,在中,点分别在边上,已知,.求证:四边形是平行四边形.22.(8分)在坐标系下画出函数的图象,(1)正比例函数的图象与图象交于A,B两点,A在B的左侧,画出的图象并求A,B两点坐标(2)根据图象直接写出时自变量x的取值范围(3)与x轴交点为C,求的面积23.(8分)矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.24.(8分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:四边形ABCD求作:点P,使∠PBC=∠PCB,且点P到AD和DC的距离相等.25.(10分)在课外活动中,我们要研究一种四边形--筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.26.(10分)已知关于x的一元二次方程x2+mx+2n=0,其中m、n是常数.(1)若m=4,n=2,请求出方程的根;(2)若m=n+3,试判断该一元二次方程根的情况.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
已知AC和BD是对角线,取各自中点,则对角线互相平分(即AO=CO,BO=DO)的四边形是平行四边形.【详解】解:由已知可得AO=CO,BO=DO,所以四边形ABCD是平行四边形,依据是对角线互相平分的四边形是平行四边形.故选:A.【点睛】本题主要考查了平行四边形的判定,熟记平行四边形的判定方法是解题的关键.2、D【解析】
假设与结论相反,可假设“四边形中没有一个角是直角或钝角”.【详解】假设与结论相反;可假设“四边形中没有一个角是直角或钝角”;与之同义的有“四边形中每一个角都是锐角”;故选:D【点睛】本题考查了反证法,解题的关键在于假设与结论相反.3、C【解析】
根据平行四边形的性质解答即可.【详解】∵平行四边形的两组对边平行,∴∠A+∠D=180°,∵∠A=55°,∴∠D=180°-55°=125°,故选C.【点睛】本题考查了平行四边形的性质.此题比较简单,注意熟记定理是解题的关键.4、A【解析】
作AM⊥x轴,根据等边三角形的性质得出OA=OB=2,∠AOB=60°,利用含30°角的直角三角形的性质求出OM=12OA=1,即可求出AM的长,进而可得A点坐标,即可得出直线OA的解析式,把x=3代入可得A′点的坐标,由一对对应点A与A′的移动规律即可求出点B′的坐标【详解】如图,作AM⊥x轴于点M,∵等边△OAB的顶点B坐标为(2,0),∴OA=OB=2,∠AOB=60°,∴OM=12OA=1,AM=3OM=3∴A(1,3),∴直线OA的解析式为:y=3x,∴当x=3时,y=33,∴A′(3,33),∴将A点向右平移2个单位,再向上平移23个单位后得到A′点,∴将B(2,0)向右平移2个单位,再向上平移23个单位后可得到B′点,∴点B′的坐标为(4,23),故选A【点睛】本题考查坐标与图形变化—平移及等边三角形的性质,根据等边三角形的性质得到平移规律是解题关键.5、B【解析】
将二元一次方程化为一元一次函数的形式,再根据k,b的取值确定直线不经过的象限.【详解】解:由得:,直线经过第一、三、四象限,不经过第二象限.故答案为:B【点睛】本题考查了一次函数与二元一次方程的关系及其图像与性质,根据k,b的值确定一次函数经过的象限是解题的关键.6、C【解析】分析:根据平行四边形的面积,可得设则在Rt中,用勾股定理即可解得.详解:∵四边形ABCD是平行四边形,∴∴设则在Rt中,即解得(舍去),故选C.点睛:考查了平行四边形的面积,平行四边形的性质,勾股定理等,难度较大,根据面积得出是解题的关键.7、A【解析】
根据中位线的性质可得DB=EF=AD,且DB∥EF,DE=BF,且DF∥BF,再结合向量的计算规则,分别判断各选项即可.【详解】∵点D、E、F分别是AB、AC、BC的中点∴FE∥BD,且EF=DB=AD同理,DE∥BF,且DE=BFA中,∵未告知AC=AB,∴、无大小关系,且方向也不同,错误;B中,∥,正确;C中,DB=EF,且与方向相反,∴,正确;D中,,正确故选:A【点睛】本题考查中位线定理和向量的简单计算,解题关键是利用中位线定理,得出各边之间的大小和位置关系.8、B【解析】
根据直角三角形斜边中线的性质求得CD,根据三角形面积求得CE,然后根据勾股定理即可求得DE.【详解】解:∵在△ABC中,∠ACB=90°,点D是边AB的中点,AB=20,
∴CD=AD=BD=10,
∵S△CAD=30,CE⊥AB,垂足为E,
∴S△CAD=AD•CE=30
∴CE=6,
∴DE=故选B.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,解题的关键是掌握这个性质的运用.9、B【解析】
结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、C【解析】
直接利用算术平方根的定义得出答案.【详解】的算术平方根是:.故选C.【点睛】此题主要考查了算术平方根,正确把握定义是解题关键.二、填空题(每小题3分,共24分)11、-1【解析】
方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于m的方程,从而求得m的值.【详解】解:将x=1代入方程得:1+3+m﹣1=0,解得:m=﹣1,故答案为﹣1.【点睛】本题主要考查了方程的解的定义.就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.12、<【解析】
先运用二次根式的性质把根号外的数移到根号内,即可解答【详解】∵=∴<故答案为:<【点睛】此题考查实数大小比较,难度不大13、(a+1)(a-1)【解析】
根据平方差公式分解即可.【详解】(a+1)(a-1).故答案为:(a+1)(a-1).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.14、【解析】
根据确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母即可得出答案.【详解】解:分式和的最简公分母是,故答案为:.【点睛】本题考查了最简公分母的定义:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.15、②【解析】
根据可能性等于所求情况与总数情况之比即可解题.【详解】解:一副扑克一共有54张扑克牌,A一共有4张,∴这张牌是“A”的概率是,这张牌是“红心”的概率是,这张牌是“大王”的概率是,∴其中发生的可能性最大的事件是②.【点睛】本题考查了简单的概率计算,属于简单题,熟悉概率公式是解题关键.16、1【解析】
由题意直接根据频数=频率×总数,进而可得答案.【详解】解:由题意可得成绩在81~90这个分数段的同学有48×0.25=1(名).故答案为:1.【点睛】本题主要考查频数和频率,解题的关键是掌握频率等于频数除以总数进行分析计算.17、5【解析】
(1)根据二次根式的性质计算即可;(2)根据二次根式除法运算法则计算即可.【详解】解:(1);(2).故答案为:5;.【点睛】此题主要考查了二次根式的性质和除法运算,正确掌握相关运算法则是解题关键.18、y=x﹣1.【解析】
可以先求出点A的坐标,进而知道直线平移的距离,得出点B的坐标,平移前后的k相同,设出平移后的关系式,把点B的坐标代入即可.【详解】∵点A(m,1)在反比例函数y=的图象,∴1=,即:m=2,∴A(2,1)、B(2,0)点A在y=kx上,∴k=∴y=x∵将直线y=x平移2个单位得到直线l,∴k相等设直线l的关系式为:y=x+b,把点B(2,0)代入得:b=﹣1,直线l的函数关系式为:y=x﹣1;故答案为:y=x﹣1.【点睛】本题考查反比例函数的图象上点的坐标的特点、待定系数法求函数解析式、一次函数和平移等知识,理解平移前后两个因此函数的k值相等,是解决问题的关键.三、解答题(共66分)19、见解析.【解析】
由平行四边形的性质可得AB=CD,AD=BC,∠ABC=∠ADC,由等边三角形的性质可得BE=EA=AB=CD=CF=DF,∠EBA=∠CDF=60°,由“SAS”可证△ADF≌△CBE,可得EC=AF,由两组对边相等的四边形是平行四边形可证四边形AECF为平行四边形.【详解】∵四边形ABCD是平行四边形∴AB=CD,AD=BC,∠ABC=∠ADC∵△ABE和△CDF是等边三角形∴BE=EA=AB=CD=CF=DF,∠EBA=∠CDF=60°∴∠ADF=∠EBC,且AD=BC,BE=DF∴△ADF≌△CBE(SAS)∴EC=AF,且AE=CF∴四边形AECF为平行四边形.【点睛】本题考查了平行四边形的判定和性质,等边三角形的性质,全等三角形的判定和性质,熟练运用平行四边形的判定和性质是本题的关键.20、(1);(2)【解析】
(1)根据k<0即可求解;(2)把(0,0)代入即可求解.【详解】(1)由得(2)解得【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的图像与性质.21、见解析【解析】
根据题意证明EF∥AB,即可解答【详解】证明:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠EFC=∠B.∴EF∥AB,∴四边形BDEF是平行四边形.【点睛】此题考查平行四边形的判定,平行线的性质,解题关键在于证明EF∥AB22、(1)图象详见解析,A(,),B(8,4);(2)x≤或x>8;(3).【解析】
(1)用描点法画出和的图象,再解方程组求得点A、B的坐标即可;(2)观察图象,结合点A、B的坐标即可求解;(3)先求得点C的坐标,再利用S△ABC=S△OBC﹣S△OAC即可求得△ABC的面积.【详解】(1)画出函数y1=|x﹣4|的图象如图:∵y=|x﹣4|∴,解得,∴A(,),解得,∴B(8,4);(2)y2≤y1时自变量x的取值范围是:x≤或x≥8;(3)令y=0则0=|x﹣4|,解得x=4,∴C(0,4),∴S△ABC=S△OBC﹣S△OAC=×4×4﹣=.【点睛】本题考查了函数图象的画法及函数的交点坐标问题,正确求得两个函数的交点坐标是解决问题的关键.23、(1)BD=;(2)y=﹣x+6;(3)M(,0),N(0,)【解析】
(1)如图1,当点D落在边BC上时,BD2=AD2-AB2,即可求解;(2)分CG=EG、CE=GE、CE=CG三种情况分别求解;(3)①由点P为矩形ABCO的对称中心,得到求得直线PB的解析式为,得到直线AD的解析式为:,解方程即可得到结论;②根据①中的结论得到直线AD的解析式为,求得∠DAB=30°,连接AE,推出A,B,E三点共线,求得,设M(m,0),N(0,n),解方程组即可得到结论.【详解】(1)如图1,在矩形ABCO中,∠B=90°当点D落在边BC上时,BD2=AD2﹣AB2,∵C(0,3),A(a,0)∴AB=OC=3,AD=AO=a,∴BD=;(2)如图2,连结AC,∵a=3,∴OA=OC=3,∴矩形ABCO是正方形,∴∠BCA=45°,设∠ECG的度数为x,∴AE=AC,∴∠AEC=∠ACE=45°+x,①当CG=EG时,x=45°+x,解得x=0,不合题意,舍去;②当CE=GE时,如图2,∠ECG=∠EGC=x∵∠ECG+∠EGC+∠CEG=180°,∴x+x+(45°+x)=180°,解得x=45°,∴∠AEC=∠ACE=90°,不合题意,舍去;③当CE=CG时,∠CEG=∠CGE=45°+x,∵∠ECG+∠EGC+∠CEG=180°,∴x+(45°+x)+(45°+x)=180°,解得x=30°,∴∠AEC=∠ACE=75°,∠CAE=30°如图3,连结OB,交AC于点Q,过E作EH⊥AC于H,连结BE,∴EH=AE=AC,BQ=AC,∴EH=BQ,EH∥BQ且∠EHQ=90°∴四边形EHQB是矩形∴BE∥AC,设直线BE的解析式为y=﹣x+b,∵点B(3,3)在直线上,则b=6,∴直线BE的解析式为y=﹣x+6;(3)①∵点P为矩形ABCO的对称中心,∴,∵B(a,3),∴PB的中点坐标为:,∴直线PB的解析式为,∵当P,B关于AD对称,∴AD⊥PB,∴直线AD的解析式为:,∵直线AD过点,∴,解得:a=±3,∵a≥3,∴a=3;②存在M,N;理由:∵a=3,∴直线AD的解析式为y=﹣x+9,∴∴∠DAO=60°,∴∠DAB=30°,连接AE,∵AD=OA=3,DE=OC=3,∴∠EAD=30°,∴A,B,E三点共线,∴AE=2DE=6,∴,设M(m,0),N(0,n),∵四边形EFMN是平行四边形,∴,解得:,∴M(,0),N(0,).【点睛】本题考查的是一次函数综合运用,涉及到正方形和等腰三角形性质、圆的基本知识,其中(2),要注意分类求解,避免遗漏.24、图形见解析.【解析】
作∠ADC的平分线和BC的垂直平分线便可.【详解】解:如图所示,点P即为所求.【点睛】考查线段垂直平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024离婚财产评估及分配程序合同
- 2025年度消防水源与供水设施建设施工协议4篇
- 2025年度智慧交通设施安装与维护服务合同3篇
- 2024版正规的居间服务合同范本
- 2024跨区域教育资源共享与合作合同
- 2024年装修工程专项分包协议3篇
- 2025年度特色餐饮品牌店面租赁合同3篇
- 2025年度甘肃桉树种植与干旱地区林业发展合同3篇
- 2025年度生态环保工程承包人工合同模板4篇
- 2025年度仓储物流场地租赁合同12篇
- 髋关节脱位-骨伤科
- 铁路征地拆迁总结汇报
- 手术室护士的职业暴露及防护措施护理课件
- 水果店选址分析报告
- 人员测评与选拔的主要方法课件
- 智慧审计方案
- 企业信息化建设现状与未来规划汇报
- 工程开工报审表及工程开工报审表、开工报告
- 音乐协会管理制度
- 2024年水发集团有限公司招聘笔试参考题库含答案解析
- 阿米巴落地实操方案
评论
0/150
提交评论