2023届江西省南康区八年级数学第二学期期末学业质量监测试题含解析_第1页
2023届江西省南康区八年级数学第二学期期末学业质量监测试题含解析_第2页
2023届江西省南康区八年级数学第二学期期末学业质量监测试题含解析_第3页
2023届江西省南康区八年级数学第二学期期末学业质量监测试题含解析_第4页
2023届江西省南康区八年级数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若75与最简二次根式m+1是同类二次根式,则m的值为()A.7 B.11 C.2 D.12.我国在近几年奥运会上所获金牌数(单位:枚)统计如下:届数23届24届25届26届27届28届金牌这组数据的众数与中位数分别是()A.32、32 B.32、16 C.16、16 D.16、323.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一直线上,则三角板ABC旋转的度数是()A.60° B.90° C.120° D.150°4.已知点A(﹣1,y1),点B(2,y2)在函数y=﹣3x+2的图象上,那么y1与y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定5.如图,正方形中,,是的中点,是上的一动点,则的最小值是()A.2 B.4 C. D.6.若式子有意义,则x的取值范围是()A.x> B.x< C.x≥ D.x≤7.一次函数的图象经过()A.第一、三、四象限 B.第二、三、四象限C.第一、二、三象限 D.第一、二、四象限8.下列四个选项中运算错误的是()A. B. C. D.9.下面四幅图是我国一些博物馆的标志,其中是中心对称图形的是()A. B. C. D.10.在以下”绿色食品、响应环保、可回收物、节水“四个标志图案中,是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.对于分式,当x______时,分式无意义;当x______时,分式的值为1.12.在反比例函数图象上有三个点A(,)、B(,)、C(,),若<0<<,则,,的大小关系是.(用“<”号连接)13.如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:______,使四边形ABCD为平行四边形(不添加任何辅助线).14.在△ABC中,D,E分别为AC,BC的中点,若DE=5,则AB=_____.15.如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(-3,),AB=1,AD=2,将矩形ABCD向右平移m个单位,使点A,C恰好同时落在反比例函数y=的图象上,得矩形A′B′C′D′,则反比例函数的解析式为______.16.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕AE=105cm,且ECFC=17.如图,正方形ABCD的边长是18,点E是AB边上的一个动点,点F是CD边上一点,CF=8,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点A',D'处,当点D'落在直线BC上时,线段AE18.如图,正方形ABCD的边长为2,点E、F分别是CD、BC的中点,AE与DF交于点P,连接CP,则CP=_____.三、解答题(共66分)19.(10分)中国数学史上最先完成勾股定理证明的数学家是公元3世纪三国时期的赵爽,他为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.将图中正方形MNKT,正方形EFGH,正方形ABCD的面积分别记为,,.若,则正方形EFGH的面积为_______.20.(6分)已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立。(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)21.(6分)解方程:(1-3y)2+2(3y-1)=1.22.(8分)某商场销售产品A,第一批产品A上市40天内全部售完.该商场对第一批产品A上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w与上市时间t的关系;图②中的折线表示每件产品A的销售利润y与上市时间t的关系.(1)观察图①,试写出第一批产品A的日销售量w与上市时间t的关系;(2)第一批产品A上市后,哪一天这家商店日销售利润Q最大?日销售利润Q最大是多少元?(日销售利润=每件产品A的销售利润×日销售量)23.(8分)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?24.(8分)天坛是明清两代皇帝每年祭天和祈祷五谷丰收的地方,以其严谨的建筑布局、奇特的建筑构造和瑰丽的建筑装饰著称于世,被列为世界文化遗产.小惠同学到天坛公园参加学校组织的综合实践活动,她分别以正东,正北方向为x轴,y轴的正方向建立了平面直角坐标系描述各景点的位置.小惠:“百花园在原点的西北方向;表示回音壁的点的坐标为”请依据小惠同学的描述回答下列问题:请在图中画出小惠同学建立的平面直角坐标系;表示无梁殿的点的坐标为______;表示双环万寿亭的点的坐标为______;将表示祈年殿的点向右平移2个单位长度,再向下平移个单位长度,得到表示七星石的点,那么表示七星石的点的坐标是______.25.(10分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?26.(10分)已知关于x的方程(m-1)x-mx+1=0。(1)证明:不论m为何值时,方程总有实数根;(2)若m为整数,当m为何值时,方程有两个不相等的整数根。

参考答案一、选择题(每小题3分,共30分)1、C【解析】

几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解:75=53,当m=7时,m+1=8=22,故A错误;当m=11时,m+1=12=23,此时m+1不是最简二次根式,故B当m=2时,m+1=3,故C故选择C.【点睛】本题考查了同类二次根式的定义.2、C【解析】数据1出现了两次最多为众数,1处在第5位和第6位,它们的平均数为1.

所以这组数据的中位数是1,众数是1,

故选C.【点睛】确定一组数据的中位数和众数,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.3、D【解析】试题分析:根据旋转角的定义,两对应边的夹角就是旋转角,即可求解.旋转角是∠CAC′=180°﹣30°=150°.故选D.考点:旋转的性质.4、A【解析】

因为k=−3<0,所以y随x的增大而减小.因为−1<2,所以y1>y2.【详解】解:∵k=﹣3<0,∴y随x的增大而减小,∵﹣1<2,∴y1>y2,故选A.【点睛】本题主要考查一次函数的性质.掌握k>0时y随x的增大而增大,k<0时y随x的增大而减小是解题关键.5、D【解析】

因为A,C关于DB对称,P在DB上,连接AC,EC与DB交点即为P,此时的值最小.【详解】如图,因为A,C关于DB对称,P再DB上,作点连接AC,EC交BD与点P,此时最小.此时=PE+PC=CE,值最小.∵正方形中,,是的中点∴∠ABC=90°,BE=2,BC=4∴CE=故答案为故选D.【点睛】本题考查的是两直线相加最短问题,熟练掌握对称是解题的关键.6、D【解析】

根据二次根式有意义,被开方数大于等于0,列不等式求解即可得.【详解】根据题意,得3-2x≥0,解得:x≤,故选D.【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键.7、D【解析】

由一次函数的解析式判断出k、b的值,再直接根据一次函数的性质进行解答即可.【详解】解:一次函数中,,,此一次函数的图象经过一、二、象限.故选:【点睛】本题考查一次函数的性质和直角坐标系,解题的关键是熟练掌握一次函数的性质.8、C【解析】

根据二次根式的运算法则,逐一计算即可.【详解】A选项,,正确;B选项,,正确;C选项,,错误;D选项,,正确;故答案为C.【点睛】此题主要考查二次根式的运算,熟练掌握,即可解题.9、C【解析】

根据中心对称图形的定义和图案特点即可解答.【详解】解:A、不是中心对称图形,故本选项错误;

B、不是中心对称图形,故本选项错误;

C、是中心对称图形,故本选项正确;

D、不是中心对称图形,故本选项错误.

故选:C.【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.10、B【解析】

根据中心对称图形的概念解答即可.【详解】选项A,是轴对称图形,不是中心对称图形;选项B,不是轴对称图形,是中心对称图形;选项C,不是轴对称图形,不是中心对称图形;选项D,不是轴对称图形,不是中心对称图形.故选B.【点睛】本题考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形.二、填空题(每小题3分,共24分)11、【解析】

根据分母为零时,分式无意义;分子为零且分母不为零,分式的值为1,据此分别进行求解即可得.【详解】当分母x+2=1,即x=-2时,分式无意义;当分子x2-9=1且分母x+2≠1,即x=2时,分式的值为1,故答案为=-2,=2.【点睛】本题考查了分式无意义的条件,分式的值为1的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(2)分式值为零⇔分子为零且分母不为零.12、【解析】

根据反比例函数图象上点的坐标特征解答即可;【详解】解:∵反比例函数图象在第二,第四象限时,y随x的增大而增大,∵点A(,)在反比例函数图象上,<0,∴>0,∵B(,)、C(,)在反比例函数图象上,0<<,∴,∴,故答案为:.【点睛】本题主要考查了反比例函数图象上点的坐标特征,掌握反比例函数图象上点的坐标特征是解题的关键.13、AD=BC.【解析】

直接利用平行四边形的判定方法直接得出答案.【详解】当AD∥BC,AD=BC时,四边形ABCD为平行四边形.故答案是AD=BC(答案不唯一).14、1.【解析】

根据三角形中位线定理解答即可.【详解】∵D,E分别为AC,BC的中点,∴AB=2DE=1,故答案为:1.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.15、y=【解析】

由四边形ABCD是矩形,得到AB=CD=1,BC=AD=2,根据A(-3,),AD∥x轴,即可得到B(-3,),C(-1,),D(-1,);根据平移的性质将矩形ABCD向右平移m个单位,得到A′(-3+m,),C(-1+m,),由点A′,C′在在反比例函数y=(x>0)的图象上,得到方程(-3+m)=(-1+m),即可求得结果.【详解】解:∵四边形ABCD是矩形,∴AB=CD=1,BC=AD=2,∵A(-3,),AD∥x轴,∴B(-3,),C(-1,),D(-1,);∵将矩形ABCD向右平移m个单位,∴A′(-3+m,),C(-1+m,),∵点A′,C′在反比例函数y=(x>0)的图象上,∴(-3+m)=(-1+m),解得:m=4,∴A′(1,),∴k=,∴反比例函数的解析式为:y=.故答案为y=.【点睛】本题考查了矩形的性质,图形的变换-平移,反比例函数图形上点的坐标特征,求反比例函数的解析式,掌握反比例函数图形上点的坐标特征是解题的关键.16、72【解析】

根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据ECFC=34,设CE=3k,CF=4k,推出EF=DE=5k,AB=CD=8k,利用相似三角形的性质求出BF,再在【详解】解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,∵△ADE沿AE对折,点D的对称点F恰好落在BC上,∴∠AFE=∠D=90°,AD=AF,∵∠EFC+∠AFB=180°-90°=90°,∠BAF+∠AFB=90°,∴∠BAF=∠EFC,∵ECFC∴设CE=3k,CF=4k,∴EF=DE=E∵∠BAF=∠EFC,且∠B=∠C=90°∴△ABF∽△FCE,∴ABFC=BF∴BF=6k,∴BC=BF+CF=10k=AD,∵AE2=AD2+DE2,∴500=100k2+25k2,∴k=2∴AB=CD=16cm,BC=AD=20cm,∴四边形ABCD的周长=72cm故答案为:72.【点睛】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.17、4或1【解析】

分两种情况:①D′落在线段BC上,②D′落在线段BC延长线上,分别连接ED、ED′、DD′,利用折叠的性质以及勾股定理,即可得到线段AE的长.【详解】解:分两种情况:①当D′落在线段BC上时,连接ED、ED′、DD′,如图1所示:由折叠可得,D,D'关于EF对称,即EF垂直平分DD',∴DE=D′E,∵正方形ABCD的边长是18,∴AB=BC=CD=AD=18,∵CF=8,∴DF=D′F=CD−CF=10,∴CD′=D'F2-C∴BD'=BC−CD'=12,设AE=x,则BE=18−x,在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+122,∴182+x2=(18−x)2+122,解得:x=4,即AE=4;②当D′落在线段BC延长线上时,连接ED、ED′、DD′,如图2所示:由折叠可得,D,D'关于EF对称,即EF垂直平分DD',∴DE=D′E,∵正方形ABCD的边长是18,∴AB=BC=CD=AD=18,∵CF=8,∴DF=D′F=CD−CF=10,CD'=D'F2-C∴BD'=BC+CD'=24,设AE=x,则BE=18−x,在Rt△AED和Rt△BED'中,由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+242,∴182+x2=(18−x)2+242,解得:x=1,即AE=1;综上所述,线段AE的长为4或1;故答案为:4或1.【点睛】本题考查了正方形的性质、折叠变换的性质、线段垂直平分线的性质、勾股定理等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键,注意分类讨论.18、【解析】

由△ADE≌△DCF可导出四边形CEPF对角互补,而CE=CF,于是将△CEP绕C点逆时针旋转90°至△CFG,可得△CPG是等腰直角三角形,从而PG=PF+FG=PF+PE=CP,求出PE和PF的长度即可求出PC的长度.【详解】解:如图,作CG⊥CP交DF的延长线于G.则∠PCF+∠GCF=∠PCG=90°,∵四边形ABCD是边长为2的正方形,∴AD=CD=BC=AB=2,∠ADC=∠DCB=90°,∵E、F分别为CD、BC中点,∴DE=CE=CF=BF=1,∴AE=DF=,∴DP==,∴PE=,PF=,在△ADE和△DCF中:∴△ADE≌△DCF(SAS),∴∠AED=∠DFC,∴∠CEP=∠CFG,∵∠ECP+∠PCF=∠DCB=90°,∴∠ECP=∠FCG,在△ECP和△FCG中:∴△ECP≌△FCG(ASA),∴CP=CG,EP=FG,∴△PCG为等腰直角三角形,∴PG=PF+FG=PF+PE==CP,∴CP=.故答案为:.【点睛】本题考查了正方形的性质,全等三角形的判定与性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.三、解答题(共66分)19、1【解析】

设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,构建方程组,利用整体的思想思考问题,求出x+4y即可.【详解】解:设四边形MTKN的面积为x,八个全等的三角形面积一个设为y,

∵正方形MNKT,正方形EFGH,正方形ABCD的面积分别为S1,S2,S3,S1+S2+S3=18,

∴得出S1=x,S2=4y+x,S3=8y+x,

∴S1+S2+S3=3x+12y=18,故3x+12y=18,

x+4y=1,

所以S2=x+4y=1,即正方形EFGH的面积为1.

故答案为1【点睛】本题考查勾股定理的证明,正方形的性质、全等三角形的性质等知识,解题的关键是学会利用参数,构建方程组解决问题.20、(1)①PE=PB,②PE⊥PB;(2)成立,理由见解析(3)①PE=PB,②PE⊥PB.【解析】

(1)根据正方形的性质和全等三角形的判定定理可证△PDC≅△PBC,推出PB=PD=PE,∠PDE=180°−∠PBC=∠PED,求出∠PEC+∠PBC=180°,求出∠EPB的度数即可(2)证明方法同(1),可得PE=PB,PE⊥PB(3)证明方法同(1),可得PE=PB,PE⊥PB【详解】(1)①PE=PB,②PE⊥PB.(2)(1)中的结论成立。①∵四边形ABCD是正方形,AC为对角线,∴CD=CB,∠ACD=∠ACB,又PC=PC,∴△PDC≌△PBC,∴PD=PB,∵PE=PD,∴PE=PB,②:由①,得△PDC≌△PBC,∴∠PDC=∠PBC.又∵PE=PD,∴∠PDE=∠PED.∴∠PDE+∠PDC=∠PEC+∠PBC=180°,∴∠EPB=360°−(∠PEC+∠PBC+∠DCB)=90°,∴PE⊥PB.(3)如图所示:结论:①PE=PB,②PE⊥PB.【点睛】此题考查正方形的性质,垂线,全等三角形的判定与性质,解题关键在于利用全等三角形的性质进行求证21、【解析】

先变形,再分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.22、(1)当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+1;(2)第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.【解析】

(1)根据题意和函数图象中的数据可以求得第一批产品A的日销售量w与上市时间t的关系;(2)根据函数图象中的数据可以求得第一批产品A上市后,哪一天这家商店日销售利润Q最大,并求出Q的最大值.【详解】解:(1)由图①可得,当0≤t≤30时,可设日销售量w=kt,∵点(30,60)在图象上,∴60=30k.∴k=2,即w=2t;当30<t≤40时,可设日销售量w=k1t+b.∵点(30,60)和(40,0)在图象上,∴,解得,k1=﹣6,b=1,∴w=﹣6t+1.综上所述,日销售量w=;即当0≤t≤30时,日销售量w=2t;当30<t≤40时,日销售量w=﹣6t+1;(2)由图①知,当t=30(天)时,日销售量w达到最大,最大值w=60,又由图②知,当t=30(天)时,产品A的日销售利润y达到最大,最大值y=60(元/件),∴当t=30(天)时,日销售量利润Q最大,最大日销售利润Q=60×60=3600(元),答:第一批产品A上市后30天,这家商店日销售利润Q最大,日销售利润Q最大是3600元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.23、(1)饮用水和蔬菜分别为1件和2件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元【解析】试题分析:(1)关系式为:饮用水件数+蔬菜件数=320;(2)关系式为:30×甲货车辆数+20×乙货车辆数≥1;10×甲货车辆数+20×乙货车辆数≥2;(3)分别计算出相应方案,比较即可.试题解析:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=1.∴x﹣80=2.答:饮用水和蔬菜分别为1件和2件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤3.∵m为正整数,∴m=2或3或3,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车3辆,乙车3辆;(3)3种方案的运费分别为:①2×300+6×360=2960(元);②3×300+5×360=3000(元);③3×300+3×360=3030(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.考点:1.一元一次不等式组的应用;2.二元一次方程组的应用.24、画平面直角坐标系见解析;,;.【解析】

(1)直接利用回音壁的点的坐标为(0,-2),得出原点位置,建立平面直角坐标系即可;(2)利用所画平面直角坐标系得出各点坐标即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论