2023届江苏省盐城市新洋第二实验学校八年级数学第二学期期末学业质量监测试题含解析_第1页
2023届江苏省盐城市新洋第二实验学校八年级数学第二学期期末学业质量监测试题含解析_第2页
2023届江苏省盐城市新洋第二实验学校八年级数学第二学期期末学业质量监测试题含解析_第3页
2023届江苏省盐城市新洋第二实验学校八年级数学第二学期期末学业质量监测试题含解析_第4页
2023届江苏省盐城市新洋第二实验学校八年级数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,正方形ABCD的对角线相交于O点,BE平分∠ABO交AO于E点,CF⊥BE于F点,交BO于G点,连接EG、OF,下列四个结论:①CE=CB;②AE=OE;③OF=CG,其中正确的结论只有()A.①②③ B.②③ C.①③ D.①②2.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是()A.19% B.20% C.21% D.22%3.若,,是Rt△ABC的三边,且,是斜边上的高,则下列说法中正确的有几个()(1),,能组成三角形(2),,能组成三角形(3),,能组成直角三角形(4),,能组成直角三角形A.1 B.2 C.3 D.44.下表是校女子排球队12名队员的年龄分布:年龄(岁)13141516人数(名)1452则关于这12名队员的年龄的说法正确的是()A.中位数是14 B.中位数是14.5 C.众数是15 D.众数是55.若一个三角形三个内角度数的比为,且最大的边长为,那么最小的边长为()A.1 B. C.2 D.6.在Rt△中,,,则()A.9 B.18 C.20 D.247.如图,有一高度为8m的灯塔AB,在灯光下,身高为1.6m的小亮从距离灯塔底端4.8m的点C处,沿BC方向前进3.2m到达点D处,那么他的影长()A.变长了0.8m B.变长了1.2m C.变短了0.8m D.变短了1.2m8.如图,延长矩形ABCD的边BC至点E,使CEBD,连接AE,若∠ADB40,则∠E的度数是()A.20 B.25 C.30 D.359.下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分10.某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间/小时5678人数10102010则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时 B.6.5小时 C.6.6小时 D.7小时11.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需()分钟到达终点B.A.78 B.76 C.16 D.1212.要使分式有意义,应满足的条件是()A. B. C. D.二、填空题(每题4分,共24分)13.某企业两年前创办时的资金为1000万元,现在已有资金1210万元,设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:______.14.当__________时,分式的值等于零.15.甲、乙两车从地出发到地,甲车先行半小时后,乙车开始出发.甲车到达地后,立即掉头沿着原路以原速的倍返回(掉头的时间忽略不计),掉头1个小时后甲车发生故障便停下来,故障除排除后,甲车继续以加快后的速度向地行驶.两车之间的距离(千米)与甲车出发的时间(小时)之间的部分函数关系如图所示.在行驶过程中,甲车排除故障所需时间为______小时.16.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=_____,b=_____,c=_____.17.已知,则的值是_______.18.若,则的值为______.三、解答题(共78分)19.(8分)问题探究(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,是正方形内一定点,请在图②中作出两条直线(要求其中一条直线必须过点),使它们将正方形的面积四等分:问题解决(3)如图③,在四边形中,,点是的中点如果,且,那么在边上足否存在一点,使所在直线将四边形的面积分成相等的两部分?若存在,求出的长:若不存在,说明理由.20.(8分)某个体户购进一批时令水果,20天销售完毕,他将本次的销售情况进行了跟踪记录,根据所记录的数据绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲,销售单价P(元/千克)与销售时间x(天)之间的关系如图乙.(1)求y与x之间的函数关系式.(2)分别求第10天和第15天的销售金额.(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?21.(8分)在平行四边形中,连接、交于点,点为的中点,连接并延长交于的延长线于点.(1)求证:为的中点;(2)若,,连接,试判断四边形的形状,并说明理由.22.(10分)为了了解高峰时段37路公交车从总站乘该路车出行的人数,随机抽查了10个班次乘该路车人数,结果如下:16,25,18,1,25,30,28,29,25,1.(1)请求出这10个班次乘该路车人数的平均数、众数与中位数;(2)如果37路公交车在高峰时段从总站共发出50个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?23.(10分)(问题情境)在综合实践课上,同学们以“图形的平移”为主题开展数学活动,如图①,先将一张长为4,宽为3的矩形纸片沿对角线剪开,拼成如图所示的四边形,,,则拼得的四边形的周长是_____.(操作发现)将图①中的沿着射线方向平移,连结、、、,如图②.当的平移距离是的长度时,求四边形的周长.(操作探究)将图②中的继续沿着射线方向平移,其它条件不变,当四边形是菱形时,将四边形沿对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.24.(10分)如图,▱ABCD中,AC为对角线,G为CD的中点,连接AG并廷长交BC的延长线于点F,连接DF,求证:四边形ACFD为平行四边形.25.(12分)如图,在平面直角坐标系中,已知点和点.(1)求直线所对应的函数表达式;(2)设直线与直线相交于点,求的面积.26.如图所示,在平行四边形ABCD中,AD∥BC,过B作BE⊥AD交AD于点E,AB=13cm,BC=21cm,AE=5cm.动点P从点C出发,在线段CB上以每秒1cm的速度向点B运动,动点Q同时从点A出发,在线段AD上以每秒2cm的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动,设运动的时间为t(秒)(1)当t为何值时,四边形PCDQ是平行四边形?(2)当t为何值时,△QDP的面积为60cm2?(3)当t为何值时,PD=PQ?

参考答案一、选择题(每题4分,共48分)1、A【解析】

根据正方形对角性质可得∠CEB=∠CBE,CE=CB;根据等腰直角三角形性质,证△ECG≌△BCG,可得AE=EG=OE;根据直角三角形性质得OF=BE=CG.【详解】∵四边形ABCD是正方形,

∴∠ABO=∠ACO=∠CBO=45°,AB=BC,OA=OB=OC,BD⊥AC,

∵BE平分∠ABO,

∴∠OBE=∠ABO=22.5°,

∴∠CBE=∠CBO+∠EBO=67.5°,

在△BCE中,∠CEB=180°-∠BCO-∠CBE=180°-45°-67.5°=67.5°,

∴∠CEB=∠CBE,

∴CE=CB;

故①正确;∵OA=OB,AE=BG,

∴OE=OG,

∵∠AOB=90°,

∴△OEG是等腰直角三角形,

∴EG=OE,

∵∠ECG=∠BCG,EC=BC,CG=CG,

∴△ECG≌△BCG,

∴BG=EG,

∴AE=EG=OE;

故②正确;

∵∠AOB=90°,EF=BF,

∵BE=CG,

∴OF=BE=CG.

故③正确.

故正确的结论有①②③.

故选A.【点睛】运用了正方形的性质、等腰三角形的性质、等腰梯形的判定、全等三角形的判定与性质以及等腰直角三角形的性质.此题难度较大,解题的关键是注意数形结合思想的应用.2、B【解析】试题分析:设这两年平均每年绿地面积的增长率是x,则过一年时间的绿地面积为1+x,过两年时间的绿地面积为(1+x)2,根据绿地面积增加44%即可列方程求解.设这两年平均每年绿地面积的增长率是x,由题意得(1+x)2=1+44%解得x1=0.2,x2=-2.2(舍)故选B.考点:一元二次方程的应用点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.3、C【解析】

根据勾股定理的逆定理和三角形的三边关系进行逐个分析即可.【详解】(1)a2+b2=c2,根据两边之和得大于第三边,故本项说法错误;(2)∵,,又∵a+b>c,∴,∴,即本项说法正确;(3)因为(c+h)2-h2=c2+2ch,ch=ab(直角三角形面积=两直角边乘积的一半=斜边和斜边上的高乘积的一半)∴2ch=2ab,∴(c+h)2-h2=c2+2ch=a2+b2+2ab=(a+b)2,所以本项说法正确;(4)因为,所以本项说法正确.所以说法正确的有3个.故选:C.【点睛】本题主要考查直角三角形的性质,勾股定理的逆定理,三角形的三边关系,关键在于熟练运用勾股定理的逆定理,认真的进行计算.4、C【解析】

根据众数、中位数的定义逐一计算即可判断.【详解】观察图表可知:人数最多的是5人,年龄是1岁,故众数是1.共12人,中位数是第6,7个人平均年龄,因而中位数是1.故选:.【点睛】本题主要考查众数、中位数,熟练掌握众数、中位数的定义是解题的关键.5、B【解析】

先求出三角形是直角三角形,再根据含30°角的直角三角形的性质得出即可.【详解】∵三角形三个内角度数的比为1:2:3,三角形的内角和等于180°,∴此三角形的三个角的度数是30°,60°,90°,即此三角形是直角三角形,∵三角形的最大的边长为2,∴三角形的最小的边长为×2=,故选B.【点睛】本题考查了三角形的内角和定理和含30°角的直角三角形的性质,能求出三角形是直角三角形是解此题的关键.6、B【解析】

根据勾股定理即可得到结论.【详解】∵Rt△中,,,∴2=18故选B.【点睛】此题主要考查勾股定理,解题的关键是熟知勾股定理的内容.7、A【解析】

根据由CH∥AB∥DG可得△HCE∽△ABE、△GDF∽△ABF,所以,将数值代入求解可得CE、DF的值,可得答案。【详解】解:如图由CH∥AB∥DG可得△HCE∽△ABE、△GDF∽△ABF,∴,即解得:CE=1.2,DF=2∴DF-CE=2-1.2=0.8故选:A【点睛】本题考查了相似三角形的应用:利用影长测量物体的高度,通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.8、A【解析】

连接,由矩形性质可得、,知,而,可得度数.【详解】连接,四边形是矩形,,,且,,又,,,,,即.故选.【点睛】本题主要考查矩形性质,熟练掌握矩形对角线相等且互相平分、对边平行是解题关键.9、B【解析】试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.10、C【解析】

根据加权平均数的计算公式列出算式,再进行计算即可.【详解】解:(5×10+=(50=330÷50=6.6(小时)故这50名学生这一周在校的平均体育锻炼时间是6.6小时.故选C.【点睛】本题考查加权平均数,解题的关键是熟练掌握加权平均数的计算公式.11、A【解析】

根据路程与时间的关系,可得甲乙的速度,根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案.【详解】解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得,解得x=千米/分钟,相遇后乙到达A站还需=2分钟,相遇后甲到达B站还需分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B,故选:A.【点睛】本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.12、C【解析】

直接利用分式有意义的条件得出答案.【详解】要使分式有意义,

则x-1≠0,

解得:x≠1.

故选:C.【点睛】此题考查分式有意义的条件,正确把握分式的定义是解题关键.二、填空题(每题4分,共24分)13、.【解析】

根据关系式:现在已有资金1000万元×(1+年平均增长率)2=现在已有资金1万元,把相关数值代入即可求解.【详解】设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:1000(1+x)2=1.故答案为:1000(1+x)2=1.【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.14、-2【解析】

令分子为0,分母不为0即可求解.【详解】依题意得x2-4=0,x-2≠0,解得x=-2,故填:-2.【点睛】此题主要考查分式的值,解题的关键是熟知分式的性质.15、【解析】

画出符合题意的行程信息图,利用图中信息列方程组求出甲乙的速度,再构建方程解决问题即可.【详解】解:设去时甲的速度为km/h,乙的速度为km/h,则有,解得,∴甲返回时的速度为km/h,设甲修车的时间为小时,则有,解得.故答案为.【点睛】本题考查函数图象问题,解题的关键是读懂图象信息,还原行程信息图,灵活运用所学知识解决问题.16、2n,n2﹣1,n2+1.【解析】

由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.【详解】解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…∴勾股数a=2n,b=n2﹣1,c=n2+1.故答案为2n,n2﹣1,n2+1.考点:勾股数.17、【解析】

先对原式进行化简,然后代入a,b的值计算即可.【详解】,.,,∴原式=,故答案为:.【点睛】本题主要考查二次根式的运算,掌握完全平方公式和平方差是解题的关键.18、.【解析】

由可得,化简即可得到,再计算,即可求得=.【详解】∵,∴,∴,∴,∴=.故答案为:.【点睛】本题考查了完全平方公式的变形应用,正确求得是解决问题的关键.三、解答题(共78分)19、(1)答案见解析;(2)答案见解析;(3)存在,BQ=b【解析】

(1)画出互相垂直的两直径即可;(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,根据三角形的面积公式和正方形的性质求出即可;(3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四边形ABQP=S四边形CDPQ即可.【详解】解:(1)如图1所示,(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,理由是:∵点O是正方形ABCD的对称中心,∴AP=CQ,EB=DF,在△AOP和△EOB中∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE,∴∠AOP=∠BOE,∵OA=OB,∠OAP=∠EBO=45°,∴△AOP≌△EOB,∴AP=BE=DF=CQ,设O到正方形ABCD一边的距离是d,则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,∴S四边形AEOP=S四边形BEOQ=S四边形CQOF=S四边形DPOF,直线EF、OM将正方形ABCD面积四等份;(3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,理由是:如图③,连接BP并延长交CD的延长线于点E,∵AB∥CD,∴∠A=∠EDP,∵在△ABP和△DEP中∴△ABP≌△DEP(ASA),∴BP=EP,连接CP,∵△BPC的边BP和△EPC的边EP上的高相等,又∵BP=EP,∴S△BPC=S△EPC,作PF⊥CD,PG⊥BC,则BC=AB+CD=DE+CD=CE,由三角形面积公式得:PF=PG,在CB上截取CQ=DE=AB=a,则S△CQP=S△DEP=S△ABP∴S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP即:S四边形ABQP=S四边形CDPQ,∵BC=AB+CD=a+b,∴BQ=b,∴当BQ=b时,直线PQ将四边形ABCD的面积分成相等的两部分.【点睛】本题考查了正方形性质,菱形性质,三角形的面积等知识点的应用,主要考查学生综合运用性质进行推理的能力,注意:等底等高的三角形的面积相等.20、(1)当;(2)第10天:200元,第15天:270元;(3)最佳销售期有5天,最高为9.6元.【解析】

(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;

(2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额.

(3)日销售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式﹣6x+120≥1,得x≤16,则求出“最佳销售期”共有5天;然后根据.(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.【详解】解:(1)①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,

∵直线y=k1x过点(15,30),∴15k1=30,解得k1=2.

∴y=2x(0≤x≤15);

②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,

∵点(15,30),(20,0)在y=k2x+b的图象上,

∴,解得:.

∴y=﹣6x+120(15<x≤20).

综上所述,可知y与x之间的函数关系式为:..

(2)∵第10天和第15天在第10天和第20天之间,

∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,

∵点(10,10),(20,8)在z=mx+n的图象上,,解得:.

∴.

当x=10时,,y=2×10=20,销售金额为:10×20=200(元);

当x=15时,,y=2×15=30,销售金额为:9×30=270(元).

故第10天和第15天的销售金额分别为200元,270元.

(3)若日销售量不低于1千克,则y≥1.

当0≤x≤15时,y=2x,

解不等式2x≥1,得x≥12;

当15<x≤20时,y=﹣6x+120,

解不等式﹣6x+120≥1,得x≤16.

∴12≤x≤16.

∴“最佳销售期”共有:16﹣12+1=5(天).

∵(10≤x≤20)中<0,∴p随x的增大而减小.

∴当12≤x≤16时,x取12时,p有最大值,此时=9.6(元/千克).

故此次销售过程中“最佳销售期”共有5天,在此期间销售单价最高为9.6元【点睛】考核知识点:一次函数在销售中的运用.要注意理解题意,分类讨论情况.21、证明步骤见解析【解析】

(1)根据平行四边形的性质再结合已知得到△AEF≌△DEC,即可解题,(2)先证明四边形ACDF是平行四边形,再证明△BCF是等边三角形,即可解题.【详解】解(1)在平行四边形中,AB∥CD,∴∠FAD=∠CDA,AB=CD∵点为的中点∴AE=DE,∠AEF=∠DEC,∴△AEF≌△DEC∴AF=CD,∴AB=AF,即为的中点(2)由(1)知AF=2AB,AF平行且等于CD∴四边形是平行四边形,又∵,∴AF=AD,∴△BCF是等边三角形,∴FC=AD,∴平行四边形是矩形【点睛】本题考查了平行四边形的性质,矩形的判定,等边三角形的判定,属于简单题,熟悉各种图形的判定定理是解题关键.22、解:(1)平均数是25人,众数是25人,中位数是26人;(2)1250人.【解析】

(1)根据平均、众数和中位数的概念分别求解即可;(2)用平均数乘以发车班次就是乘客的总人数.【详解】解:(1)平均数=(16+25+18+1+25+30+28+29+25+1)=25(人),这组数据按从小到大的顺序排列为:16,18,25,25,25,1,1,28,29,30,中位数为:;众数为:25;(2)50×25=1250(人);答:在高峰时段从总站乘该路车出行的乘客共有1250人.【点睛】本题考查了众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.23、【问题情境】16;【操作发现】6+2;【操作探究】20或1.【解析】

【问题情境】首先由题意,可得AB=CD,AC=BD,∠ADB=∠DBC=90°,然后根据勾股定理,可得AB,即可求得四边形ABCD的周长;【操作发现】首先由平移,得AE=CF=3,DE=BF,再根据平行,即可判定四边形AECF是平行四边形,然后根据勾股定理,可得AF,即可求得四边形AECF的周长;【操作探究】首先由平移,得当点E与点F重合时,四边形ABCD为菱形,得出其对角线的长,沿对角线剪开的三角形组成的矩形有两种情况:以6为长,4为宽的矩形和以3为宽,8为长的矩形,即可求得其周长.【详解】由题意,可得AB=CD,AC=BD,∠ADB=∠DBC=90°又∵,,∴根据勾股定理,可得∴四边形的周长是故答案为16.由平移,得AE=CF=3,DE=BF.∵AE∥CF,∴四边形AECF是平行四边形.∵BE=DF=4,∴EF=DE=2.在Rt△AEF中,∠AEF=90°,由勾股定理,得AF==.∴四边形AECF的周长为2AE+2AF=6+2.由平移,得当点E与点F重合时,四边形ABCD为菱形,AE=CE=3,BE=DE=4,沿对角线剪开的三角形组成的矩形有两种情况:①以6为长,4为宽的矩形,其周长为;②以3为宽,8为长的矩形,其周长为.故答案为20或1.【点睛】此题主要考查根据平移的特征,矩形和菱形的性质进行求解,熟练运用,即可解题.24、见解析【解析】

根据平行四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论