![2023届云南省巧家县数学八年级第二学期期末调研试题含解析_第1页](http://file4.renrendoc.com/view/e164c642cdd536563870e5ef610527a1/e164c642cdd536563870e5ef610527a11.gif)
![2023届云南省巧家县数学八年级第二学期期末调研试题含解析_第2页](http://file4.renrendoc.com/view/e164c642cdd536563870e5ef610527a1/e164c642cdd536563870e5ef610527a12.gif)
![2023届云南省巧家县数学八年级第二学期期末调研试题含解析_第3页](http://file4.renrendoc.com/view/e164c642cdd536563870e5ef610527a1/e164c642cdd536563870e5ef610527a13.gif)
![2023届云南省巧家县数学八年级第二学期期末调研试题含解析_第4页](http://file4.renrendoc.com/view/e164c642cdd536563870e5ef610527a1/e164c642cdd536563870e5ef610527a14.gif)
![2023届云南省巧家县数学八年级第二学期期末调研试题含解析_第5页](http://file4.renrendoc.com/view/e164c642cdd536563870e5ef610527a1/e164c642cdd536563870e5ef610527a15.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列调查中,不适合普查但适合抽样调查的是()A.调查年级一班男女学生比例 B.检查某书稿中的错别字C.调查夏季冷饮市场上冰淇凌的质量 D.调查载人航天飞船零件部分的质量2.若,则的值为()A.9 B.-9 C.35 D.-353.下列函数,y随x增大而减小的是()A.y=xB.y=x4.等腰三角形的两边长分别为2、4,则它的周长为()A.8 B.10 C.8或10 D.以上都不对5.已知关于x的不等式组的整数解共有2个,则整数a的取值是()A.﹣2 B.﹣1 C.0 D.16.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行A.8米 B.10米 C.12米 D.14米7.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,下列说法:四边形ACED是平行四边形,△BCE是等腰三角形,四边形ACEB的周长是10+2,④四边形ACEB的面积是16.正确的个数是()A.2个 B.3个 C.4个 D.5个8.如图,在平行四边形中,是边上的中点,是边上的一动点,将沿所在直线翻折得到,连接,则的最小值为()A. B. C. D.9.边长为4的等边三角形的面积是()A.4 B.4 C.4 D.10.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是1环,甲的方差是1.2,乙的方差是1.1.下列说法中不一定正确的是()A.甲、乙射中的总环数相同 B.甲的成绩稳定 C.乙的成绩波动较大 D.甲、乙的众数相同11.下列各曲线中,表示是的函数是()A. B. C. D.12.数据1,3,5,7,9的方差是().A.2 B.4 C.8 D.16二、填空题(每题4分,共24分)13.如图,菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是的边AB,BC边的中点若,,则线段EF的长为______.14.正方形A1B1C1O、A2B2C2C1、A3B3C3C2…按如图的方式放置,A1、A2、A3…和点C1、C2、C3…分别在直线y=x+2和x轴上,则点∁n的横坐标是_____.(用含n的代数式表示)15.已知一直角三角形的两条直角边分别为6cm、8cm,则此直角三角形斜边上的高为____。16.如图,已知等边的边长为8,是中线上一点,以为一边在下方作等边,连接并延长至点为上一点,且,则的长为_________.17.不等式5﹣2x>﹣3的解集是_____.18.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为___.三、解答题(共78分)19.(8分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且,连接AE、AF、EF(1)求证:(2)若,,求的面积.20.(8分)如图,平面直角坐标系中,直线分别交x轴、y轴于A、B两点(AOAB)且AO、AB的长分别是一元二次方程x23x20的两个根,点C在x轴负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.21.(8分)如图,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.
求证:四边形AECF是平行四边形.22.(10分)我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?23.(10分)某校某次外出社会实践活动分为三类,因资源有限,七年级7班分配到20个名额,其中甲类2个、乙类8个、丙类10个,已知该班有50名学生,班主任准备了50个签,其中甲类、乙类、丙类按名额设置、30个空签.采取抽签的方式来确定名额分配,请解决下列问题:(1)该班小明同学恰好抽到丙类名额的概率是多少?(2)该班小丽同学能有幸去参加实践活动的概率是多少?(3)后来,该班同学强烈呼吁名额太少,要求抽到甲类的概率要达到20%,则还要争取甲类名额多少个?24.(10分)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?25.(12分)端午节前夕,小东妈妈准备购买若干个粽子和咸鸭蛋(每个棕子的价格相同,每个咸鸭蛋的价格相同).已知某超市粽子的价格比咸鸭蛋的价格贵1.8元,小东妈妈发现,花30元购买粽子的个数与花12元购买的咸鸭蛋个数相同.(1)求该超市粽子与咸鸭蛋的价格各是多少元?(2)小东妈妈计划购买粽子与咸鸭蛋共18个,她的一张购物卡上还有余额40元,若只用这张购物卡,她最多能购买粽子多少个?26.(1)计算:(2)解方程:.
参考答案一、选择题(每题4分,共48分)1、C【解析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多且具有破坏性,而抽样调查得到的调查结果比较近似.据此解答即可.【详解】A.调查年级一班男女学生比例,调查范围小,准确度要求高,适合普查,故该选项不符合题意,B.检查某书稿中的错别字是准确度要求高的调查,适合普查,故该选项不符合题意.C.调查夏季冷饮市场上冰淇凌的质量具有破坏性,不适合普查,适合抽样调查,故该选项符合题意,D.调查载人航天飞船零件部分的质量是准确度要求高的调查,适合普查,故该选项不符合题意.故选C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、C【解析】
先将两边同时平方可得:a2-2ab+b2=4,再将a2+b2=18代入可得ab的值,从而得到5ab的值.【详解】因为所以a2-2ab+b2=4,又因为,所以-2ab=-14,所以ab=7,所以5ab=35.故选:C.【点睛】考查了运用完全平方公式变形求值,解题关键是对进行变形,进而求得ab的值.3、D【解析】试题分析:∵y=kx+b中,k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小,A选项中,k=1>0,故y的值随着x值的增大而增大;B选项中,k=1>0,故y的值随着x值的增大而增大;C选项中,k=1>0,故y的值随着x值的增大而增大;D选项中,k=-1<0,y的值随着x值的增大而减小;故选D.考点:一次函数的性质.4、B【解析】
由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【详解】解:①当2为腰时,2+2=4,不能构成三角形,故此种情况不存在;
②当4为腰时,符合题意,则周长是2+4+4=1.
故选:B.【点睛】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.5、C【解析】分析:先用a表示出不等式组的整数解,再根据不等式组的整数解有2个可得出a的取值范围.解:,由①得,x≥a,由②得,x≤1,故不等式组的解集为:a≤x≤1,∵不等式的整数解有2个,∴其整数解为:1,1,∵a为整数,∴a=1.故选C.6、B【解析】
试题分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.如图,设大树高为AB=10米,小树高为CD=4米,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4米,EC=8米,AE=AB﹣EB=10﹣4=6米,在Rt△AEC中,(米).故选B.7、B【解析】
证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【详解】①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC∥DE,∵CE∥AD,∴四边形ACED是平行四边形,所以①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,所以②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB=,∴四边形ACEB的周长是10+2;所以③正确;④四边形ACEB的面积:×2×4+×4×2=8,所以④错误,故选:C.【点睛】考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法和等腰三角形的判定方法.8、C【解析】
如图,先作辅助线,首先根据垂直条件,求出线段ME、DE长度,然后运用勾股定理求出DE的长度,再根据翻折的性质,当折线,与线段CE重合时,线段长度最短,可以求出最小值.【详解】如图,连接EC,过点E作EMCD交CD的延长线于点M.四边形ABCD是平行四边形,E为AD的中点,又,根据勾股定理得:根据翻折的性质,可得,当折线,与线段CE重合时,线段长度最短,此时=.【点睛】本题是平行四边形翻折问题,主要考查直角三角形勾股定理,根据题意作出辅助线是解题的关键.9、C【解析】
如图,根据等边三角形三线合一的性质可以求得高线AD的长度,根据BC和AD即可求得三角形的面积.【详解】解:如图,∵△ABC是等边三角形,AD⊥BC,∴BD=DC=2,在Rt△ABD中,AB=4,BD=2,∴AD=,∴S△ABC=BC·AD==4,故选C.【点睛】本题考查了等边三角形的性质、勾股定理有应用、三角形的面积等,熟练掌握相关性质以及定理是解题的关键.10、D【解析】解:A、根据平均数的定义,正确;B、根据方差的定义,正确;C、根据方差的定义,正确,D、一组数据中出现次数最多的数值叫众数.题目没有具体数据,无法确定众数,错误.故选D11、B【解析】
对于x的每一个值,y都有唯一的值与它对应,则称y是x的函数,据此观察图象可得.【详解】解:A,C,D曲线,对于每一个x值,都有2个y值与它对应,因此不符合函数的定义,B中一个x对应一个y值,故B曲线表示y是x的函数.故答案为:B【点睛】本题考查了函数的定义,准确把握定义是解题的关键.12、C【解析】
先计算出平均数,再根据方差公式计算即可.【详解】∵1、3、5、7、9的平均数是(1+3+5+7+9)÷5=5,
∴方差=×[(1-5)2+(3-5)2+(5-5)2+(7-5)2+(9-5)2]=8;
故选:C.【点睛】考查方差的定义与意义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题(每题4分,共24分)13、3【解析】
由菱形性质得AC⊥BD,BO=,AO=,由勾股定理得AO=,由中位线性质得EF=.【详解】因为,菱形ABCD中,对角线AC,BD相交于点O,所以,AC⊥BD,BO=,AO=,所以,AO=,所以,AC=2AO=6,又因为E,F分别是的边AB,BC边的中点所以,EF=.故答案为3【点睛】本题考核知识点:菱形,勾股定理,三角形中位线.解题关键点:根据勾股定理求出线段长度,再根据三角形中位线求出结果.14、【解析】
观察图像,由直线y=x+2和正方形的关系,即可得出规律,推导出Cn的横坐标.【详解】解:根据题意,由图像可知,,正方形A1B1C1O、A2B2C2C1,直线y=x+2的斜率为1,则以此类推,,【点睛】此题主要考查一次函数图像的性质和正方形的关系,推导得出关系式.15、4.8cm.【解析】
根据勾股定理可求出斜边.然后由于同一三角形面积一定,可列方程直接解答.【详解】∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10(cm),设斜边上的高为h,则直角三角形的面积为×6×8=×10h,解得:h=4.8cm,这个直角三角形斜边上的高为4.8cm.故答案为:4.8cm.【点睛】此题考查勾股定理,解题关键在于列出方程.16、1【解析】
作CG⊥MN于G,证△ACE≌△BCF,求出∠CBF=∠CAE=30°,则可以得出,在Rt△CMG中,由勾股定理求出MG,即可得到的长.【详解】解:如图示:作CG⊥MN于G,
∵△ABC和△CEF是等边三角形,
∴AC=BC,CE=CF,∠ACB=∠ECF=10°,
∴∠ACB-∠BCE=∠ECF-∠BCE,
即∠ACE=∠BCF,
在△ACE与△BCF中∴△ACE≌△BCF(SAS),又∵AD是三角形△ABC的中线
∴∠CBF=∠CAE=30°,
∴,在Rt△CMG中,,∴MN=2MG=1,
故答案为:1.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF≌△BCF.17、x<1【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:﹣2x>﹣3﹣5,﹣2x>﹣8,x<1,故答案为x<1.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.18、110【解析】
延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【详解】如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.
∵∠CBF=90°,
∴∠ABC+∠OBF=90°,
又∵直角△ABC中,∠ABC+∠ACB=90°,
∴∠OBF=∠ACB,
在△OBF和△ACB中,
,
∴△OBF≌△ACB(AAS),
∴AC=OB,
同理:△ACB≌△PGC,
∴PC=AB,
∴OA=AP,
所以,矩形AOLP是正方形,
边长AO=AB+AC=3+4=7,
所以,KL=3+7=10,LM=4+7=11,
因此,矩形KLMJ的面积为10×11=110.【点睛】本题考查勾股定理,解题的关键是读懂题意,掌握勾股定理.三、解答题(共78分)19、(1)详见解析;(2)80.【解析】
(1)根据SAS证明即可;
(2)根据勾股定理求得AE=,再由旋转的性质得出,从而由面积公式得出答案.【详解】四边形ABCD是正方形,
,
而F是CB的延长线上的点,
,
在和中
,
;
(2),
,
在中,DE=4,AD=12,
,
可以由绕旋转中心
A点,按顺时针方向旋转90度得到,
,
的面积(平方单位).【点睛】本题主要考查正方形性质和全等三角形判定与性质及旋转性质,熟练掌握性质是解题关键.20、(1)A(1,0),C(-3,0);(2)(3)存在,点Q的坐标为(-1,0),(1,2),(1,-2),(1,).【解析】
(1)根据方程求出AO、AB的长,再由AB:AC=1:2求出OC的长,即可得到答案;(2)分点M在CB上时,点M在CB延长线上时,两种情况讨论S与t的函数关系式;(3)分AQ=AB,BQ=BA,BQ=AQ三种情况讨论可求点Q的坐标.【详解】(1)x23x20,(x-1)(x-2)=0,∴x1=1,x2=2,∴AO=1,AB=2,∴A(1,0),,∵AB:AC=1:2,∴AC=2AB=4,∴OC=AC-OA=4-1=3,∴C(-3,0).(2)∵,∴,∵,∴,∴△ABC是直角三角形,且∠ABC=90,由题意得:CM=t,BC=,当点M在CB上时,,②当点M在CB延长线上时,(t>).综上,.(3)存在,①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,∴Q1(-1,0),在菱形ABP2Q2中,AQ2=AB=2,∴Q2(1,2),在菱形ABP3Q3中,AQ3=AB=2,∴Q3(1,-2);②当AB为菱形的对角线时,如图所示,设菱形的边长为x,则在Rt△AP4O中,,解得x=,∴Q4(1,).综上,平面内满足条件的点Q的坐标为(-1,0),(1,2),(1,-2),(1,).【点睛】此题考查一次函数的综合运用、解一元二次方程,解题过程中注意分类讨论.21、详见解析【解析】
平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为四边形ABCD是平行四边形,可证OF=OE,OA=OC,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决.【详解】证明:∵四边形ABCD是平行四边形,
∴OD=OB,OA=OC,
∵AB∥CD,
∴∠DFO=∠BEO,∠FDO=∠EBO,
∴在△FDO和△EBO中,
∴△FDO≌△EBO(AAS),
∴OF=OE,
∴四边形AECF是平行四边形.【点睛】平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.22、(1)2;(2)7200元.【解析】分析:(1)连接BD.在Rt△ABD中可求得BD的长,由BD、CD、BC的长度关系可得△DBC为直角三角形,DC为斜边;由四边形ABCD由Rt△ABD和Rt△DBC构成,则容易求解;(2)根据总费用=面积×单价解答即可.详解:(1)连接BD.在Rt△ABD中,BD2=AB2+AD2=32+42=1.在△CBD中,CD2=132,BC2=122,而122+1=132,即BC2+BD2=CD2,∴∠DBC=90°,S四边形ABCD=S△BAD+S△DBC=12•AD•AB+12DB•BC=12×4×3+12(2)需费用2×200=7200(元).点睛:本题考查了勾股定理及逆定理的应用,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.23、(1);(2);(3)8个名额【解析】
(1)直接利用概率公式计算;(2)直接利用概率公式计算;(3)设还要争取甲类名额x个,利用概率公式得到,然后解方程求出x即可.【详解】(1)该班小明同学恰好抽到丙类名额的概率=;(2)该班小丽同学能有幸去参加实践活动的概率=;(3)设还要争取甲类名额x个,根据题意得,解得x=8,答:要求抽到甲类的概率要达到20%,则还要争取甲类名额8个.(1)【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.24、(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【解析】
(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工个零件,根据工作时间工作总量工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设A型机器安排m台,则B型机器安排台,根据每小时加工零件的总量型机器的数量型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年活性白土合作协议书
- 2025年通信设备、计算机及其他电子设备项目合作计划书
- Terbumeton-生命科学试剂-MCE
- Octacosanoic-acid-Standard-生命科学试剂-MCE
- 汤姆索亚历险记的冒险情节征文
- 2025年收获后处理机械项目建议书
- 黑背上的马丽童年故事读后感
- 2025年储冷、蓄热装置合作协议书
- 2025年水利管理及技术咨询服务项目合作计划书
- 鲁滨逊漂流记中的探险精神评析
- 生物化学绪论
- 保理业务解决方案
- 图纸会审答疑
- 公路工程项目隐隐蔽工程管理办法
- PCCP安装与水压试验
- 中国民间艺术 ppt课件
- 景观生态学教学大纲(共10页)
- 招标工作手册
- 锻件的结构设计与工艺性分析
- 信访事项听证程序流程图
- 国内外会计名家简介
评论
0/150
提交评论