2023届云南省文山壮族苗族自治州数学八下期末经典模拟试题含解析_第1页
2023届云南省文山壮族苗族自治州数学八下期末经典模拟试题含解析_第2页
2023届云南省文山壮族苗族自治州数学八下期末经典模拟试题含解析_第3页
2023届云南省文山壮族苗族自治州数学八下期末经典模拟试题含解析_第4页
2023届云南省文山壮族苗族自治州数学八下期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在中,,点是边上一点,,则的大小是()A.72° B.54° C.38° D.36°2.下列调查中,不适宜用普查的是()A.了解全班同学每周体育锻炼的时间; B.了解全市中小学生每天的零花钱;C.学校招聘教师,对应聘人员面试; D.旅客上飞机前的安检.3.在Rt△ABC中,∠C=90°,D为BC上一点,要使点D到AB的距离等于DC,则必须满足()A.点D是BC的中点B.点D在∠BAC的平分线上C.AD是△ABC的一条中线D.点D在线段BC的垂直平分线上4.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2 B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)5.将直线y=﹣4x向下平移2个单位长度,得到的直线的函数表达式为()A.y=﹣4x﹣2 B.y=﹣4x+2 C.y=﹣4x﹣8 D.y=﹣4x+86.一次函数y=6x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.多项式与的公因式是()A. B. C. D.8.据有关实验测定,当室温与人体正常体温(37℃)的比值为黄金比时,人体感到最舒适,这个室温约(精确到1℃)()A.21℃ B.22℃ C.23℃ D.24℃9.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件中不能说明△ABC是直角三角形的是()A.a=32,b=42,c=52 B.a=9,b=12,c=15C.∠A:∠B:∠C=5:2:3 D.∠C﹣∠B=∠A10.已知正比例函数y=3x的图象经过点(1,m),则m的值为()A. B.3 C.﹣ D.﹣3二、填空题(每小题3分,共24分)11.如图,在等腰直角三角形ACD,∠ACD=90°,AC=,分别以边AD,AC,CD为直径面半图,所得两个月形图案AGCE和DHCF的面积之和(图中阴影部分)为_____________.12.一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最少打___折.13.请写出一个图象经过点的一次函数的表达式:______.14.等边三角形的边长是4,则高AD_________(结果精确到0.1)15.在平面直角坐标系中,将直线y=-2x+1的图象向左平移2个单位,再向上平移1个单位,所得到直线的解析式是__________。16.如图所示,在▱ABCD中,对角线AC,BD交于点O,OE∥BC交CD于E,若OE=3cm,则AD的长为.17.若xy=3,则18.把抛物线yx2向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为_____.三、解答题(共66分)19.(10分)已知:直线始终经过某定点.(1)求该定点的坐标;(2)已知,,若直线与线段相交,求的取值范围;(3)在范围内,任取3个自变量,,,它们对应的函数值分别为,,,若以,,为长度的3条线段能围成三角形,求的取值范围.20.(6分)某学校欲招聘一名新教师,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制)如下表所示:应试者面试成绩笔试成绩才艺甲837990乙858075丙809073(1)根据三项得分的平均分,从高到低确定应聘者的排名顺序;(2)学校规定:笔试、面试、才艺得分分别不得低于80分、80分、70分,并按照60%、30%、10%的比例计入个人总分,请你说明谁会被录用?21.(6分)先化简分式,后在,0,1,2中选择一个合适的值代入求值.22.(8分)如图,在平行四边形ABCD中,BE平分∠ABC交CD的延长线于点E,作CF⊥BE于F.(1)求证:BF=EF;(2)若AB=8,DE=4,求平行四边形ABCD的周长.23.(8分)已知:如(图1),在平面直角坐标中,A(12,0),B(6,6),点C为线段AB的中点,点D与原点O关于点C对称.(1)利用直尺和圆规在(图1)中作出点D的位置(保留作图痕迹),判断四边形OBDA的形状,并说明理由;(2)在(图1)中,动点E从点O出发,以每秒1个单位的速度沿线段OA运动,到达点A时停止;同时,动点F从点O出发,以每秒a个单位的速度沿OB→BD→DA运动,到达点A时停止.设运动的时间为t(秒).①当t=4时,直线EF恰好平分四边形OBDA的面积,求a的值;②当t=5时,CE=CF,请直接写出a的值.24.(8分)如图,在平行四边形ABCD中,E是AB延长线上的一点,DE交BC于点F.已知BEAB=23,25.(10分)如图,过点A(0,3)的一次函数y1=kx+b(k≠0)的图象与正比例函数y2=2x的图象相交于点B,且点B的横坐标是1.(1)求点B的坐标及k、b的值;(2)若该一次函数的图象与x轴交于D点,求△BOD的面积(3)当y1≤y2时,自变量x的取值范围为.26.(10分)某学校计划在总费用2300元的限额内,租用客车送234名学生和6名教师集体外出活动,每辆客车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如下表所示.甲种客车乙种客车载客量/(人/辆)4530租金/(元/辆)400280(1)共需租多少辆客车?(2)请给出最节省费用的租车方案.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

由BD=BC=AD,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC,则∠ABC=∠C=2x,在△ABC中,根据三角形的内角和定理列方程求解.【详解】解:∵BD=BC=AD,

∴设∠A=∠ABD=x,则∠C=∠CDB=2x,

又∵AB=AC,

∴∠ABC=∠C=2x,

在△ABC中,∠A+∠ABC+∠C=180°,

即x+2x+2x=180°,

解得x=36°,

即∠A=36°.

故选:D.【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的等边对等角的性质,三角形外角的性质,三角形内角和定理列方程求解.2、B【解析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故A选项错误;B、了解全市中小学生每天的零花钱,数量大,不宜用全面调查,故B选项正确;C、学校招聘教师,对应聘人员面试,必须全面调查,故C选项错误;D、旅客上飞机前的安检,必用全面调查,故D选项不正确.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、B【解析】

根据角平分线的判定定理解答即可.【详解】如图所示,DE为点D到AB的距离.∵DC=DE,∠C=90°,DE⊥AB,∴AD平分∠CAD,则点D在∠BAC的平分线上.故选B.【点睛】本题考查了角平分线的判定,掌握到角的两边的距离相等的点在角的平分线上是解题的关键.4、D【解析】

利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.【详解】解:第一个图形阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b),故选D.【点睛】本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键.5、A【解析】

上下平移时k值不变,b值是上加下减,依此求解即可.【详解】解:将直线y=﹣4x向下平移2个单位长度,得到直线y=﹣4x﹣2;故选:A.【点睛】此题考查了一次函数图象与几何变换.要注意求直线平移后的解析式时k的值不变,只有b发生变化.6、D【解析】试题分析:先判断出一次函数y=6x+1中k的符号,再根据一次函数的性质进行解答即可.解:∵一次函数y=6x+1中k=6>0,b=1>0,∴此函数经过一、二、三象限,故选D.7、B【解析】

直接将原式分别分解因式,进而得出公因式即可.【详解】解:∵a2-21=(a+1)(a-1),a2-1a=a(a-1),∴多项式a2-21与a2-1a的公因式是a-1.

故选:B.【点睛】此题主要考查了公因式,正确将原式分解因式是解题的关键.8、C【解析】

根据黄金比的值可知,人体感到最舒适的温度应为37℃的0.1倍.【详解】解:根据黄金比的值得:37×0.1≈23℃.故选C.【点睛】本题考查了黄金分割的知识,解答本题的关键是要熟记黄金比的值为≈0.1.9、A【解析】

由三角形内角和定理及勾股定理的逆定理进行判断即可.【详解】A.a+b=32+42=25=52=c,构不成三角形,也就不可能是直角三角形了,故符合题意;B.a2+b2=92+122=225=152=c2,根据勾股定理逆定理可以判断,△ABC是直角三角形,故不符合题意;C.设∠A、∠B、∠C分别是5x、2x、3x,5x+2x+3x=180,x=18,∠A=90°,所以△ABC是直角三角形,故不符合题意;D.∠C﹣∠B=∠A,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形,故不符合题意,故选A.【点睛】本题考查了直角三角形的判定,涉及了勾股定理的逆定理、三角形内角和定理等知识,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10、B【解析】

解:把点(1,m)代入y=3x,可得:m=3故选B二、填空题(每小题3分,共24分)11、1【解析】

由勾股定理可得AC2+CD2=AD2,然后确定出S半圆ACD=S半圆AEC+S半圆CFD,从而得证.【详解】解:∵△ACD是直角三角形,

∴AC2+CD2=AD2,

∵以等腰Rt△ACD的边AD、AC、CD为直径画半圆,

∴S半圆ACD=π•AD2,S半圆AEC=π•AC2,S半圆CFD=π•CD2,

∴S半圆ACD=S半圆AEC+S半圆CFD,

∴所得两个月型图案AGCE和DHCF的面积之和(图中阴影部分)=Rt△ACD的面积=××=1;

故答案为1.【点睛】本题考查了勾股定理,等腰直角三角形的性质,掌握定理是解题的关键.12、九【解析】

打折销售后要保证获利不低于8%,因而可以得到不等关系为:利润率≥8%,设可以打x折,根据不等关系就可以列出不等式.【详解】解:设可以打x折.

那么(600×-500)÷500≥8%

解得x≥1.

故答案为1.【点睛】本题考查一元一次不等式的应用,解题关键是读懂题意,找到符合题意的不等关系式.13、y=2x-1【解析】

可设这个一次函数解析式为:,把代入即可.【详解】设这个一次函数解析式为:,把代入得,这个一次函数解析式为:不唯一.【点睛】一次函数的解析式有k,b两个未知数当只告诉一个点时,可设k,b中有一个已知数,然后把点的坐标代入即可.14、3.1【解析】

根据等边三角形的性质及勾股定理进行计算即可.【详解】如图,三角形ABC为等边三角形,AD⊥BC,AB=4,∵三角形ABC为等边三角形,AD⊥BC,∴BD=CD=2,在中,.故答案为:3.1.【点睛】本题考查等边三角形的性质和勾股定理,掌握“三线合一”的性质及勾股定理是解题关键.15、y=-2x-2【解析】

利用平移中点的变化规律:横坐标左移加,右移减;纵坐标上移加,下移减,求解即可.【详解】将直线y=−2x+1的图象向左平移2个单位,再向上平移一个单位,得到的直线的解析式是:y=−2(x+2)+1+1=−2x−2,即y=−2x−2.【点睛】本题考查了一次函数图象与几何变换,熟练掌握平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.16、6cm.【解析】试题分析:由平行四边形ABCD中,对角线AC和BD交于点O,OE∥BC,可得OE是△ACD的中位线,根据三角形中位线的性质,即可求得AD的长.解:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∵OE∥BC,∴OE∥AD,∴OE是△ACD的中位线,∵OE=3cm,∴AD=2OE=2×3=6(cm).故答案为:6cm.【点评】此题考查了平行四边形的性质以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.17、1【解析】

根据比例的性质即可求解.【详解】∵xy=3,∴x=3y,∴原式=3y+yy故答案为:1.【点睛】本题考查了比例的性质,关键是得出x=3y.18、y=(x+1)1-1【解析】

先由平移方式确定新抛物线的顶点坐标.然后可得出顶点式的解析式。【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1).

可设新抛物线的解析式为:y=(x-h)1+k,

代入得:y=(x+1)1-1.故答案为:y=(x+1)1-1【点睛】此题考查了二次函数图象与几何变换以及一般式转化顶点式,正确将一般式转化为顶点式是解题关键.三、解答题(共66分)19、(1);(2);(3)或.【解析】

(1)对题目中的函数解析式进行变形即可求得点的坐标;(2)根据题意可以得到相应的不等式组,从而可以求得的取值范围;(3)根据题意和三角形三边的关系,利用分类讨论的数学思想可以求得的取值范围.【详解】(1),当时,,即为点;(2)点、坐标分别为、,直线与线段相交,直线恒过某一定点,,解得,;(3)当时,直线中,随的增大而增大,当时,,以、、为长度的3条线段能围成三角形,,得,;当时,直线中,随的增大而减小,当时,,以、、为长度的3条线段能围成三角形,,得,,由上可得,或.【点睛】本题考查一次函数图象与系数的关系、一次函数图象上点的坐标特征、三角形三边关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答.20、(1)排名顺序为:甲、丙、乙;(2)丙会被录用.【解析】

(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;(2)先算出甲、乙、丙的总分,根据公司的规定先排除甲,再根据丙的总分最高,即可得出丙被录用【详解】(1),,∴∴排名顺序为:甲、丙、乙.(2)由题意可知,只有甲的笔试成绩只有79分,不符合规定乙的成绩为:丙的成绩为:∵甲先被淘汰,按照学校规定,丙的成绩高于乙的成绩,乙又被淘汰∴丙会被录用.【点睛】此题考查加权平均数,掌握运算法则是解题关键21、,.【解析】

先对进行化简,再选择-1,0,1代入计算即可.【详解】原式因为且所以当时,原式当时,原式【点睛】考查了整式的化简求值,解题关键是熟记分式的运算法则.22、(1)证明见解析;(2)1.【解析】

(1)只要证明CB=CE,利用等腰三角形的三线合一的性质即可解决问题;(2)根据CE=CB,求出BC的长即可解决问题.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CE,∴∠E=∠ABE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠E=∠CBE,∴CB=CE,∵CF⊥BE,∴BF=EF.(2)∵四边形ABCD是平行四边形,∴AB=CD=8,∵DE=4,∴BC=CE=12,∴平行四边形ABCD的周长为2(AB+BC)=1.【点睛】本题考查平行四边形的性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.23、(1)四边形OBDA是平行四边形,见解析;(2)①2+,②或或【解析】

(1)作射线OC,截取CD=OC,然后由对角线互相平分的四边形是平行四边形进行可得到四边形的形状;(2)①由直线EF恰好平分四边形OBDA的面积可知直线EF必过C,接下来,证明△OEC≌△DFC,从而可求得DF的长度,于是得到BF=2,然后再由两点间的距离公式求得OB的长,从而可求得a的值;②先求得点E的坐标,然后求得EC的长,从而得到CF1的长,然后依据勾股定理的逆定理证明∠OBA=90°,在△BCF1中,依据勾股定理可求得BF1的长,从而可求得a的值,设点F2的坐标(b,6),由CE=CF列出关于b的方程可求得点F2的坐标,从而可求得a的值,在Rt△CAF3中,取得AF3的长,从而求得点F运动的路程,于是可求得a的值.【详解】解:(1)如图所示:四边形OBDA是平行四边形.理由如下:∵点C为线段AB的中点,∴CB=CA.∵点D与原点O关于点C对称,∴CO=CD.∴四边形OBDA是平行四边形.(2)①如图2所示;∵直线EF恰好平分四边形OBDA的面积,∴直线EF必过C(9,3).∵t=1,∴OE=1.∵BD∥OA,∴∠COE=∠CDF.∵在△OEC和△DFC中,∴△OEC≌△DFC.∴DF=OE=1.∴BF=4-1=2.由两点间的距离公式可知OB==6.∴1a=6+2.∴a=2+.②如图3所示:∵当t=3时,OE=3,∴点E的坐标(3,0).由两点间的距离公式可知EC==3.∵CE=CF,∴CF=3.由两点间的距离公式可知OB=BA=6,又∵OA=4.∴△OBA为直角三角形.∴∠OBA=90°.①在直角△F1BC中,CF1=3,BC=3,∴BF1=.∴OF1=6-.∴a=.②设F2的坐标为(b,6).由两点间的距离公式可知=3.解得;b=3(舍去)或b=5.∴BF2=5-6=6.∴OB+BF2=6+6.∴a=.③∵BO∥AD,∴∠BAD=∠OBA=90°.∴AF3==.∴DF3=6-.∴OB+BD+DF3=6+4+6-=4-+4.∴a=.综上所述a的值为或或.【点睛】本题主要考查的是四边形的综合应用,解答本题主要应用了平行四边形的判定、全等三角形的性质和判定、勾股定理和勾股定理的逆定理的应用,两点间的距离公式求得F1B,F2D,F3A的长度是解题的关键.24、解:∵四边形ABCD是平行四边形,∴AE∥DC,∴△BEF∽△CDF∵AB=DC,BE:AB=2:3,∴BE:DC=2:3∴∴【解析】试题分析:根据平行四边形的性质,可证△BEF∽△CDF,由BE:AB=2:3,可证BE:DC=2:3,根据相似三角形的性质,可证S考点:相似三角形的判定与性质;平行四边形的性质点评:本题主要考查了相似三角形的判定和性质,平行四边形的性质等知识点25、(1)B(1,2),,;(2)△BOD的面积3;(3)x≥1.【解析】

(1)先利用正比例函数解析式确定B点坐标,然后利用待定系数法求一次函数解析式,从而得到k、b的值;(2)先确定D点坐标,然后利用三角形面积公式计算△BOD的面积;(3)结合函数图象,写出自变量x的取值范围.【详解】(1)当x=1时,y2=2x=2,则B(1,2),把A(0,3),B(1,2)代入y=kx+b得,解得,所以一次函数解析式为y=-x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论