版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,直线与轴交于点,依次作正方形、正方形、…正方形使得点、、…,在直线上,点、、…,在轴上,则点的坐标是()A. B.C. D.2.下列调查最适合用查阅资料的方法收集数据的是()A.班级推选班长 B.本校学生的到时间C.2014世界杯中,谁的进球最多 D.本班同学最喜爱的明星3.一天早上小华步行上学,他离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开.为了不迟到,小华跑步到了学校,则小华离学校的距离y与时间t之间的函数关系的大致图象是()A. B. C. D.4.已知△ABC,AB=5,BC=12,AC=13,点P是AC上一个动点,则线段BP长的最小值是()A. B.5 C. D.125.一组数据5,8,8,12,12,12,44的众数是()A.5 B.8 C.12 D.446.为了了解某市八年级女生的体能情况,从某校八年级的甲、乙两班各抽取27名女生进行一分钟跳绳次数的测试,测试数据统计如下:人数中位数平均数甲班2710497乙班2710696如果每分钟跳绳次数大于或等于105为优秀,则甲、乙两班优秀率的大小关系是()A.甲优<乙优 B.甲优>乙优 C.甲优=乙优 D.无法比较7.已知m、n是正整数,若+是整数,则满足条件的有序数对(m,n)为()A.(2,5) B.(8,20) C.(2,5),(8,20) D.以上都不是8.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于()A.60° B.65° C.75° D.80°9.某青年排球队12名队员的年龄情况如下表所示:这12名队员的平均年龄是()A.18岁 B.19岁 C.20岁 D.21岁10.下列四边形中是轴对称图形的个数是()A.4个 B.3个 C.2个 D.1个11.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度12.小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是A.他离家8km共用了30min B.他等公交车时间为6minC.他步行的速度是100m/min D.公交车的速度是350m/min二、填空题(每题4分,共24分)13.如图,在平行四边形纸片中,,将纸片沿对角线对折,边与边交于点,此时恰为等边三角形,则重叠部分的面积为_________.14.如图,将正方形放在平面直角坐标系中,是坐标原点,点的坐标为,则点的坐标为__________.15.如图,平行四边形ABCD中,,,,则平行四边形ABCD的面积为______.16.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.17.如图,小军在地面上合适的位置平放了一块平面镜(平面镜的高度忽略不计),刚好在平面镜中的点处看到旗杆顶部,此时小军的站立点与点的水平距离为,旗杆底部与点的水平距离为.若小军的眼睛距离地面的高度为(即),则旗杆的高度为_____.18.如果代数式有意义,那么字母x的取值范围是_____.三、解答题(共78分)19.(8分)已知直线y=kx+3(1-k)(其中k为常数,k≠0),k取不同数值时,可得不同直线,请探究这些直线的共同特征.实践操作(1)当k=1时,直线l1的解析式为,请在图1中画出图象;当k=2时,直线l2的解析式为,请在图2中画出图象;探索发现(2)直线y=kx+3(1-k)必经过点(,);类比迁移(3)矩形ABCD如图2所示,若直线y=kx+k-2(k≠0)分矩形ABCD的面积为相等的两部分,请在图中直接画出这条直线.20.(8分)如图,在菱形ABCD中,∠ABC=60°,过点A作AE⊥CD于点E,交对角线BD于点F,过点F作FG⊥AD于点G.(1)若AB=2,求四边形ABFG的面积;(2)求证:BF=AE+FG.21.(8分)如图,在△ABC中,D、E分别是边AB、AC的中点,点F是BC延长线上一点,且CF=12BC,连结CD、EF,那么CD与EF22.(10分)如图,在平面直角坐标系中,的顶点坐标分别是,,.(1)将平移得到,且的坐标是,画出;(2)将绕点逆时针旋转得到,画出.23.(10分)如图,4×6的正方形网格中,每个小正方形的顶点称为格点,A,B,C均为格点.在下列各图中画出四边形ABCD,使点D也为格点,且四边形ABCD分别符合下列条件:(1)是中心对称图形(画在图1中)(2)是轴对称图形(画在图2中)(3)既是轴对称图形,又是中心对称图形(画在图3中)24.(10分)如图,在四边形ABCD中,AD⊥BD,BC=4,CD=3,AB=13,AD=12,求证:∠C=90°.25.(12分)在矩形ABCD中,AB=12,BC=25,P是线段AB上一点(点P不与A,B重合),将△PBC沿直线PC折叠,顶点B的对应点是点G,CG,PG分别交线段AD于E,O.(1)如图1,若OP=OE,求证:AE=PB;(2)如图2,连接BE交PC于点F,若BE⊥CG.①求证:四边形BFGP是菱形;②当AE=9,求的值.26.解不等式组并求出其整数解
参考答案一、选择题(每题4分,共48分)1、D【解析】
先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标,可以得到规律:Bn(2n−1,2n−1),据此即可求解.【详解】解:∵令x=0,则y=1,∴A1(0,1),∴OA1=1.∵四边形A1B1C1O是正方形,∴A1B1=1,∴B1(1,1).∵当x=1时,y=1+1=2,∴B2(3,2);同理可得,B3(7,4);∴B1的纵坐标是:1=20,B1的横坐标是:1=21−1,∴B2的纵坐标是:2=21,B2的横坐标是:3=22−1,∴B3的纵坐标是:4=22,B3的横坐标是:7=23−1,∴Bn的纵坐标是:2n−1,横坐标是:2n−1,则Bn故选:D.【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键.2、C【解析】
了解收集数据的方法及渠道,得出最适合用查阅资料的方法收集数据的选项.【详解】A、B、D适合用调查的方法收集数据,不符合题意;C适合用查阅资料的方法收集数据,符合题意.故选C.【点睛】本题考查了调查收集数据的过程与方法.解题关键是掌握收集数据的几种方法:查资料、做实验和做调查.3、B【解析】
根据题意可得小华步行上学时小华离学校的距离减小,而后离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿时小华离学校的距离增大,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开距离不变,小华跑步到了学校时小华离学校的距离减小直至为1.【详解】解:根据题意可得小华步行上学时小华离学校的距离减小,而后离开家后不远便发现数学书忘在了家里,于是以相同的速度回家去拿时小华离学校的距离增大,到家后发现弟弟把牛奶洒在了地上,就放下手中的东西,收拾好后才离开距离不变,小华跑步到了学校时小华离学校的距离减小直至为1.故选:B.【点睛】本题考查函数的图象,关键是根据题意得出距离先减小再增大,然后不变后减小为1进行判断.4、A【解析】解:∵AB=5,BC=12,AC=13,∴AB2+BC2=169=AC2,∴△ABC是直角三角形,当BP⊥AC时,BP最小,∴线段BP长的最小值是:13BP=5×12,解得:BP=.故选A.点睛:本题主要考查勾股定理的逆定理以及直角三角形面积求法,关键是熟练运用勾股定理的逆定理进行分析.5、C【解析】
根据题目中的数据可以得到这组数据的众数,从而可以解答本题.【详解】解:∵一组数据5,8,8,12,12,12,44,∴这组数据的众数是12,故选C.【点睛】本题考查众数,解答本题的关键是明确题意,会求一组数据的众数.6、A【解析】
已知每分钟跳绳次数在105次以上的为优秀,则要比较优秀率,关键是比较105次以上人数的多少;从表格中可看出甲班的中位数为104,且104<105,所以甲班优秀率肯定小于50%;乙班的中位数为106,106>105,至此可求得答案.【详解】从表格中可看出甲班的中位数为104,104<105,乙班的中位数为106,106>105,即甲班大于105次的人数少于乙班,所以甲、乙两班的优秀率的关系是甲优<乙优.故选A.【点睛】本题考查了统计量的选择,正确理解中位数和平均数的定义是解答本题的关键.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.平均数代表一组数据的平均水平,中位数代表一组数据的中等水平7、C【解析】
根据二次根式的性质分析即可得出答案.【详解】解:∵+是整数,m、n是正整数,∴m=2,n=5或m=8,n=20,当m=2,n=5时,原式=2是整数;当m=8,n=20时,原式=1是整数;即满足条件的有序数对(m,n)为(2,5)或(8,20),故选:C.【点睛】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.8、C【解析】
连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【详解】连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选:C.【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.9、C【解析】
根据平均数的公式求解即可.【详解】这12名队员的平均年龄是(岁),故选:C.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.10、B【解析】
根据轴对称图形的概念逐一进行判断即可.【详解】平行四边形不是轴对称图形,故不符合题意;矩形是轴对称图形,故符合题意;菱形是轴对称图形,故符合题意;正方形是轴对称图形,故符合题意,所以是轴对称图形的个数是3个,故选B.【点睛】本题考查了轴对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形.11、C【解析】
A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.12、D【解析】A、依题意得他离家8km共用了30min,故选项正确;B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故选项正确;C、他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min,故选项正确;D、公交车(30-16)min走了(8-1)km,故公交车的速度为7000÷14=500m/min,故选项错误.故选D.二、填空题(每题4分,共24分)13、【解析】
首先根据等边三角形的性质可得AB'=AE=EB',∠B'=∠B'EA=60°,根据折叠的性质,∠BCA=∠B'CA,,再证明∠B'AC=90°,再证得S△AEC=S△AEB',再求S△AB'C进而可得答案.【详解】解:∵为等边三角形,∴AB'=AE=EB',∠B'=∠B'EA=60°,
根据折叠的性质,∠BCA=∠B'CA,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC,AB=CD,
∴∠B'EA=∠B'CB,∠EAC=∠BCA,
∴∠ECA=∠BCA=30°,∴∠EAC=30°,
∴∠B'AC=90°,
∵,
∴B'C=8,∴AC==,
∵B'E=AE=EC,∴S△AEC=S△AEB'=S△AB'C=××4×=,故答案为.【点睛】此题主要考查了平行四边形的性质、直角三角形的性质以及翻折变换,关键是掌握平行四边形的对边平行且相等,直角三角形30°角所对的边等于斜边的一半.14、【解析】
过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,根据同角的余角相等求出∠OEI=∠GOH,再利用“角角边”证明△EOI和△OGH全等,根据全等三角形对应边相等可得OH=EI,EI=OI,然后根据点G在第二象限写出坐标即可.【详解】解:过点E作EI⊥x轴于I,过点G作GH⊥x轴于H,如图所示:∵四边形OEFG是正方形,∴OE=OG,∠EOG=90°,∴∠GOH+∠EOI=90°,又∵∠OEI+∠EOI=90°,∴∠OEI=∠GOH,在△EOI和△OGH中,,∴△EOI≌△OGH(AAS),∴OH=EI=3,GH=OI=2,∵点G在第二象限,∴点G的坐标为(-3,2).故答案为(-3,2).【点睛】本题考查了全等三角形的判定与性质,正方形的性质,坐标与图形性质,作辅助线构造出全等三角形是解题的关键.15、10【解析】
从A点做底边BC的垂线AE,在三角形ABE中30度角所对的直角边等于斜边AB的一半,所以AE=2,同时AE也是平行四边形ABCD的高,所以平行四边形的面积等于5x2=10.【详解】作AE⊥BC,因为所以,AE=AB=×4=2.所以,平行四边形的面积=BC×AE=5x2=10.故答案为10【点睛】本题考核知识点:直角三角形.解题关键点:熟记含有30〬角的直角三角形的性质.16、22.5【解析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=(180°-45°)=67.5°,∴∠ACP度数是67.5°-45°=22.5°17、1【解析】分析:根据题意容易得到△CDE∽△CBA,再根据相似三角形的性质解答即可.详解:由题意可得:AB=1.5m,BC=2m,DC=12m,
△ABC∽△EDC,
则,
即,
解得:DE=1,
故答案为1.点睛:本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程.18、x⩾−2且x≠1【解析】
先根据分式及二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.【详解】∵代数式有意义,
∴,
解得x⩾−2且x≠1.
故答案为:x⩾−2且x≠1.【点睛】本题考查分式有意义的条件和二次根式有意义的条件,解题的关键是掌握分式有意义的条件和二次根式有意义的条件.三、解答题(共78分)19、(1)y=x,见解析;y=2x-3,见解析;(2)(3,3);(3)见解析.【解析】
(1)把当k=1,k=2时,分别代入求一次函数的解析式即可,(2)利用k(x-3)=y-3,可得无论k取何值(0除外),直线y=kx+3(1-k)必经过点(3,3);(3)先求出直线y=kx+k-2(k≠0)无论k取何值,总过点(-1,-2),再确定矩形对角线的交点即可画出直线.【详解】(1)当k=1时,直线l1的解析式为:y=x,当k=2时,直线l2的解析式为y=2x-3,如图1,(2)∵y=kx+3(1-k),∴k(x-3)=y-3,∴无论k取何值(0除外),直线y=kx+3(1-k)必经过点(3,3);(3)如图2,∵直线y=kx+k-2(k≠0)∴k(x+1)=y+2,∴(k≠0)无论k取何值,总过点(-1,-2),找出对角线的交点(1,1),通过两点的直线平分矩形ABCD的面积.【点睛】本题主要考查了一次函数综合题,涉及一次函数解析式及求点的坐标,矩形的性质,解题的关键是确定k(x+1)=y+2,无论k取何值(k≠0),总过点(-1,-2).20、(1);(2)证明见解析.【解析】
(1)根据菱形的性质和垂线的性质可得∠ABD=30°,∠DAE=30°,然后再利用三角函数及勾股定理在Rt△ABF中,求得AF,在Rt△AFG中,求得FG和AG,再运用三角形的面积公式求得四边形ABFG的面积;(2)设菱形的边长为a,根据(1)中的结论在Rt△ABF、Rt△AFG、Rt△ADE中分别求得BF、FG、AE,然后即可得到结论.【详解】解:(1)∵四边形ABCD是菱形,∴AB∥CD,BD平分∠ABC,又∵AE⊥CD,∠ABC=60°,∴∠BAE=∠DEA=90°,∠ABD=30°,∴∠DAE=30°,在Rt△ABF中,tan30°=,即,解得AF=,∵FG⊥AD,∴∠AGF=90°,在Rt△AFG中,FG=AF=,∴AG==1.所以四边形ABFG的面积=S△ABF+S△AGF=;(2)设菱形的边长为a,则在Rt△ABF中,BF=,AF=,在Rt△AFG中,FG=AF=,在Rt△ADE中,AE=,∴AE+FG=,∴BF=AE+FG.【点睛】本题主要考查了菱形的性质、勾股定理、三角形的面积公式、利用三角函数值解直角三角形等知识,熟练掌握基础知识是解题的关键.21、CD=EF.【解析】
根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,DE=12BC,然后求出四边形【详解】结论:CD=EF.理由如下:∵D、E分别是边AB、AC的中点,∴DE∥BC,DE=12∵CF=12BC,∴DE=CF,∴四边形DEFC是平行四边形,∴CD=【点睛】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定与性质,熟记定理并确定出平行四边形是解题的关键.22、(1)作图见解析;(2)作图见解析.【解析】
(1)分别将点A、B、C向下平移4个单位,再向左平移4个单位得到对应点,再顺次连接可得;(2)分别将点A、B、C绕点A顺时针旋转90°得到对应点,再顺次连接可得.【详解】(1)如图所示;(2)如图所示.【点睛】本题主要考查作图-平移变换、旋转变换,解题的关键是熟练掌握平移变换和旋转变换的定义和性质.23、(1)详见解析;(2)详见解析;(3)详见解析;【解析】
(1)以AB、BC为邻边作平行四边形即可;(2)作点B关于直线AC的对称点D,然后连接AD、CD即可;(3)以AB、BC为邻边作菱形即可.【详解】(1)解:如图:(2)解:如图:(3)解:如图:【点睛】本题考查了轴对称和中心对称作图.根据已知条件准确构造符合条件的图形是解答本题的关键.24、证明见解析.【解析】
先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明CD⊥BC.【详解】证明:∵AD⊥BD,AB=13,AD=12,∴BD=1.又∵BC=4,CD=3,∴CD2+BC2=BD2.∴∠C=90°【点睛】本题考查了勾股定理及其逆定理,注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.25、(1)见解析;(2)①见解析;②
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度场地租赁合同书电子模板
- 2024年度大型活动食堂食材配送合同
- 2024版新能源汽车采购与租赁合同
- 2024年度企业形象设计与塑造合同
- 2024年度羽毛球教练咨询服务合同
- 2024年度铁矿石运输承包合同
- 医院网络安全防护与数据管理计划
- 2024信息安全合同:餐饮业数据保护与网络安全协议
- 二零二四年度彩钢房防火性能升级改造合同
- 教学工作总结-一年级年级组长工作总结
- 压力容器质量安全风险管控清单
- 《使市场在资源配置中起决定作用》
- 13-仿生设计案例
- where引导的三大从句课件公开课一等奖市赛课一等奖课件
- 轴类零件数控加工工艺分析-毕业论文
- 建筑施工安全风险辨识分级管控(台账)清单
- 电视墙安防监控系统报价单
- 人教版语文能力层级-·-教材-·-中考
- 【企业薪酬体系管理研究国内外文献综述】
- 千兆位以太网用光纤收发器设计-设计应用
- 《超星尔雅学习通》【对话大国工匠致敬劳动模范】章节测试题及答案
评论
0/150
提交评论