2023届重庆市长寿区川维片区数学八年级第二学期期末达标测试试题含解析_第1页
2023届重庆市长寿区川维片区数学八年级第二学期期末达标测试试题含解析_第2页
2023届重庆市长寿区川维片区数学八年级第二学期期末达标测试试题含解析_第3页
2023届重庆市长寿区川维片区数学八年级第二学期期末达标测试试题含解析_第4页
2023届重庆市长寿区川维片区数学八年级第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在平行四边形中,与交于点,点在上,,,,点是的中点,若点以/秒的速度从点出发,沿向点运动:点同时以/秒的速度从点出发,沿向点运动,点运动到点时停止运动,点也时停止运动,当点运动()秒时,以点、、、为顶点的四边形是平行四边形.A.2 B.3 C.3或5 D.4或52.如图,在平面直角坐标系中,矩形ABCD的边平行于坐标轴,对角线BD经过坐标原点,点A在函数y=kxx<0的图象上,若点C的坐标是3,-2,则k的值为A.-8 B.-6 C.-2 D.43.如图所示是根据某班级名同学一周的体育锻炼情况绘制的统计图,由图像可知该班同学一周参加体育锻炼时间的中位数,众数分别是()A.,B.,C.,D.,4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是16=±4.其中错误的个数有(A.0个 B.1个 C.2个 D.3个5.用反证法证明:“中,若.则”时,第一步应假设()A. B. C. D.6.下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个 B.2个 C.3个 D.4个7.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A.2 B.2 C. D.38.如图,以正方形ABCD的边AB为一边向外作等边三角形ABE,则∠BED的度数为()A.55° B.45° C.40° D.42.5°9.已知一次函数的图象如图所示,当时,的取值范围是()A. B. C. D.10.如图,▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.6 B.8 C.10 D.1211.一次函数的图象不经过的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限12.矩形ABCD中AB=10,BC=8,E为AD边上一点,沿CE将△CDE对折,点D正好落在AB边上的F点.则AE的长是()A.3B.4C.5D.6二、填空题(每题4分,共24分)13.如图,在□ABCD中,AB=10,AD=8,AC⊥BC.则□ABCD的面积是__________.14.如图,已知正方形的边长为,则图中阴影部分的面积为__________.15.在平面直角坐标系中,将直线y=-2x+1的图象向左平移2个单位,再向上平移1个单位,所得到直线的解析式是__________。16.已知,是关于的一元二次方程的两个实根,且满足,则的值等于__________.17.若,则________.18.若平行四边形中相邻两个内角的度数比为1:3,则其中较小的内角是__________度.三、解答题(共78分)19.(8分)如图,▱ABCD中,点E在BC延长线上,EC=BC,连接DE,AC,AC⊥AD于点A、(1)求证:四边形ACED是矩形;(2)连接BD,交AC于点F.若AC=2AD,猜想∠E与∠BDE的数量关系,并证明你的猜想.20.(8分)已知:如图,平面直角坐标系xOy中,B(0,1),OB=OC=OA,A、C分别在x轴的正负半轴上.过点C的直线绕点C旋转,交y轴于点D,交线段AB于点E.(1)求∠OAB的度数及直线AB的解析式;(2)若△OCD与△BDE的面积相等,求点D的坐标.21.(8分)如图,正方形中,点、、分别是、、的中点,、交于,连接、.下列结论:①;②;③;④.正确的有()A.1个 B.2个 C.3个 D.4个22.(10分)(1)解分式方程:;(2)化简:23.(10分)如图,△ABC与△AFD为等腰直角三角形,∠FAD=∠BAC=90°,点D在BC上,则:(1)求证:BF=DC.(2)若BD=AC,则求∠BFD的度数.24.(10分)如图,在平面直角坐标系xOy中,已知直线AB:y=x+4交x轴于点A,交y轴于点B.直线CD:y=-x-1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标.(2)若点P是射线MD的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系,并指出x的取值范围.(3)当S=10时,平面直角坐标系内是否存在点E,使以点B,E,P,M为顶点的四边形是平行四边形?若存在,共有几个这样的点?请求出其中一个点的坐标(写出求解过程);若不存在,请说明理由.25.(12分)在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N,动点P在线段BA上以每秒cm的速度由点B向点A运动.同时,动点Q在线段AC上由点N向点C运动,且始终保持MQ⊥MP.一个点到终点时,两个点同时停止运动.设运动时间为t秒(t>0).(1)△PBM与△QNM相似吗?请说明理由;(2)若∠ABC=60°,AB=4cm.①求动点Q的运动速度;②设△APQ的面积为s(cm2),求S与t的函数关系式.(不必写出t的取值范围)(3)探求BP²、PQ²、CQ²三者之间的数量关系,请说明理由.26.如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,AE=,求BD的长.

参考答案一、选择题(每题4分,共48分)1、C【解析】

由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,,证得,求出AD的长,得出EC的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形是平行四边形,∴,∴,且∴∴,∵点是的中点∴,设当点P运动t秒时,以点、、、为顶点的四边形是平行四边形,∴∴,或∴或5故选:C.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、一元一次方程的应用等知识,熟练掌握平行四边形的判定与性质是解决问题的关键.2、B【解析】

先利用矩形的性质得到矩形AEOM的面积等于矩形OFCN的面积,则根据反比例函数图象上点的坐标特征得到k的值.【详解】解:连接BD,设A(x,y),如图,∵矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,∴矩形AEOM的面积等于矩形ONCF的面积,∴xy=k=3×(−2),即k=−6,故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=3、B【解析】

根据中位数、众数的概念分别求解即可.【详解】将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;

众数是一组数据中出现次数最多的数,即8;

故选:B【点睛】考查了中位数、众数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.4、D【解析】

直接利用相关实数的性质分析得出答案.【详解】①实数和数轴上的点是一一对应的,正确;②无理数是开方开不尽的数,错误,无理数是无限不循环小数;③负数没有立方根,错误,负数有立方根;④16的平方根是±4,用式子表示是:16=±4故选:D.【点睛】此题考查实数,解题关键在于掌握其定义.5、B【解析】

熟记反证法的步骤,直接选择即可【详解】解:用反证法证明命题“在△ABC中,AB≠AC,求证:∠B≠∠C”的过程中,第一步应是假设∠B=∠C.故选:B【点睛】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.

反证法的步骤是:

(1)假设结论不成立;

(2)从假设出发推出矛盾;

(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.6、C【解析】

直接利用一次函数的定义:一般地:形如(,、是常数)的函数,进而判断得出答案.【详解】①;②;③;④;⑤其中,是一次函数的有:①;②;④共3个.故选:.【点睛】此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.7、C【解析】

解析:∵△ABC是等边三角形P是∠ABC的平分线,∴∠EBP=∠QBF=30°,∵BF=2,FQ⊥BP,∴BQ=BF•cos30°=2×=,∵FQ是BP的垂直平分线,∴BP=2BQ=2,在Rt△BEF中,∵∠EBP=30°,∴PE=BP=.故选C.8、B【解析】

根据等边三角形和正方形的性质,可证△AED为等腰三角形,从而可求∠AED,也就可得∠BED的度数.【详解】解:∵等边△ABE,∴∠EAB=60°,AB=AE∴∠EAD=150°,∵正方形ABCD,∴AD=AB∴AE=AD,∴∠AED=∠ADE=15°,∴∠BED=60°-15°=45°,故选:B.【点睛】此题主要考查了等边三角形的性质.即每个角为60度.9、C【解析】试题解析:从图像可以看出当自变量时,y的取值范围在x轴的下方,故故选C.10、C【解析】

由平行四边形的性质得出DC=AB=4,AD=BC=1,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【详解】∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=1.∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=1+4=2.故选C.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.11、A【解析】

根据一次函数的解析式和性质,可以得到该函数的图象经过哪几个象限,不经过哪个象限,进而得到答案.【详解】解:∵,k=-1,b=-2,

∴该函数的图象经过第二、三、四象限,不经过第一象限,

故选:A.【点睛】本题主要考查了一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.12、A【解析】

由矩形的性质和折叠的性质可得CF=DC=10,DE=EF,由勾股定理可求BF的长,即可得AF=4,在Rt△AEF中,由勾股定理即可求得AE的长.【详解】∵四边形ABCD是矩形,∴AB=CD=10,BC=AD=8,∠A=∠D=∠B=90°,∵折叠,∴CD=CF=10,EF=DE,在Rt△BCF中,BF==6,∴AF=AB-BF=10-6=4,在Rt△AEF中,AE2+AF2=EF2,∴AE2+16=(8-AE)2,∴AE=3,故选A.【点睛】本题考查了翻折变换,矩形的性质,勾股定理,熟练掌握折叠的性质是本题的关键.二、填空题(每题4分,共24分)13、1【解析】

先根据平行四边形的性质求出BC的长,再根据勾股定理及三角形的面积公式解答即可.【详解】根据平行四边形的性质得AD=BC=8

在Rt△ABC中,AB=10,AD=8,AC⊥BC

根据勾股定理得AC==6,

则S平行四边形ABCD=BC•AC=1,故答案为:1.【点睛】本题考查了平行四边形的对边相等的性质和勾股定理,正确求出AC的长是解题的关键.14、2【解析】

正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=×4×4=2cm1.

故答案为:2.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.15、y=-2x-2【解析】

利用平移中点的变化规律:横坐标左移加,右移减;纵坐标上移加,下移减,求解即可.【详解】将直线y=−2x+1的图象向左平移2个单位,再向上平移一个单位,得到的直线的解析式是:y=−2(x+2)+1+1=−2x−2,即y=−2x−2.【点睛】本题考查了一次函数图象与几何变换,熟练掌握平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.16、-1【解析】

根据根的存在情况限定△≥0;再将根与系数的关系代入化简的式子x1•x2+2(x2+x1)+4=13,即可求解;【详解】解:∵x1,x2是关于x一元二次方程x2+(3a−1)x+2a2−1=0的两个实根,∴△=a2−6a+5≥0∴a≥5或a≤1;∴x1+x2=−(3a−1)=1−3a,x1•x2=2a2−1,∵(x1+2)(x2+2)=13,∴整理得:x1•x2+2(x2+x1)+4=13,∴2a2−1+2(1−3a)+4=13,∴a=4或a=−1,∴a=−1;故答案为−1.【点睛】本题考查一元二次方程根与系数的关系;熟练掌握根与系数的关系,一元二次方程的解法是解题的关键.17、【解析】

由,得到a=b,代入所求的代数式,即可解决问题.【详解】∵,∴a=b,∴,故答案为:.【点睛】该题主要考查了分式的化简与求值问题;解题的关键是将所给的条件或所要计算、求值的代数式,灵活变形、合理运算,求值.18、45【解析】

由平行四边形的性质得出∠B+∠C=180°,由已知条件得出∠C=3∠B,得出∠B+3∠B=180°,得出∠B=45°即可.【详解】解:如图所示:

∵四边形ABCD是平行四边形,

∴AB∥CD,

∴∠B+∠C=180°,

∵∠B:∠C=1:3,

∴∠C=3∠B,

∴∠B+4∠B=180°,

解得:∠B=45°,

故答案为:45°.【点睛】本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.三、解答题(共78分)19、(1)证明见解析(2)∠E=2∠BDE【解析】

(1)由四边形ABCD是平行四边形,EC=BC,易证得四边形ACED是平行四边形,又由AC⊥AD,即可证得四边形ACED是矩形;

(2)根据矩形的性质得∠E=∠DAC=90°,可证得DA=AF,由等腰三角形的性质可得∠ADF=45°,则∠BDE=45°,可得出∠E=2∠BDE.【详解】(1)证明:因为ABCD是平行边形,∴AD=BC,AD∥BC,∵BC=CE,点E在BC的延长线上,∴AD=EC,AD∥EC,∴四边形ACED为平行四边形,∵AC⊥AD,∴平行四边形ACED为矩形(2)∠E=2∠BDE理由:∵平行四边形ABCD中,AC=2AF,又∵AC=2AD,∴AD=AF,∴∠ADF=∠AFD,∵AC∥ED,∴∠BDE=∠BFC,∵∠BFC=∠AFD,∴∠BDE=∠ADF=45°,∴∠E=2∠BDE【点睛】此题考查了矩形的判定与性质.熟悉矩形的判定和性质是关键.20、(1)45°,y=﹣x+1;(2)(0,).【解析】

(1)根据A、B的坐标和三角形的内角和定理求出∠OAB的度数即可;设直线AB的解析式为y=kx+b,把A、B的坐标代入得出方程组,求出方程组的解即可;(2)推出三角形AOB和三角形ACE的面积相等,根据面积公式求出E的纵坐标,代入直线AB的解析式,求出E的横坐标,设直线CE的解析式是:y=mx+n,利用待定系数法求出直线EC的解析式,进而即可求得点D的坐标.【详解】解:(1)∵OB=OC=OA,∠AOB=90°,∴∠OAB=45°;∵B(0,1),∴A(1,0),设直线AB的解析式为y=kx+b.∴解得,∴直线AB的解析式为y=﹣x+1;(2)∵S△COD=S△BDE,∴S△COD+S四边形AODE=S△BDE+S四边形AODE,即S△ACE=S△AOB,∵点E在线段AB上,∴点E在第一象限,且yE>0,∴∴把y代入直线AB的解析式得:∴设直线CE的解析式是:y=mx+n,∵代入得:解得:∴直线CE的解析式为令x=0,则∴D的坐标为【点睛】本题考查了等腰三角形的性质,用待定系数法求一次函数的解析式,三角形的面积等知识点,综合运用这些性质进行推理和计算是解此题的关键,此题题型较好,综合性比较强,但难度适中,通过做此题培养了学生分析问题和解决问题的能力.21、C【解析】

连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,易证得CE⊥DF与AH⊥DF,根据垂直平分线的性质,即可证得AG=AD,AG≠DG,由直角三角形斜边上的中线等于斜边的一半,即可证得HG=AD,根据等腰三角形的性质,即可得∠CHG=∠DAG.则问题得解.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E、F、H分别是AB、BC、CD的中点,∴BE=CF,在△BCE与△CDF中,,∴△BCE≌△CDF,(SAS),∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF;故①正确;在Rt△CGD中,H是CD边的中点,∴HG=CD=AD,即2HG=AD;故④正确;连接AH,如图所示:同理可得:AH⊥DF,∵HG=HD=CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD;若AG=DG,则△ADG是等边三角形,则∠ADG=60°,∠CDF=30°,而CF=CD≠DF,∴∠CDF≠30°,∴∠ADG≠60°,∴AG≠DG,故②错误;∴∠DAG=2∠DAH,同理:△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG;故③正确;正确的结论有3个,故选C.【点睛】此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.22、(1);(2).【解析】

(1)分式方程去分母转化为整式方程,求出整式方程的解可得x的值,经检验是分式方程的解;(2)原式括号中两项通分并进行同分母减法计算,同时利用除法法则变形、约分即可求解.【详解】(1)解:经检验:是原方程的解,所以原方程的解为.(2)原式.【点睛】本题考查了解分式方程以及分式方程的混合运算,熟练掌握运算法则是正确解题的关键.23、(1)见解析;(2)67.5°.【解析】

(1)先根据等腰直角三角形的性质得出AB=AC,AF=AD,∠FAD=∠BAC=90°,则有∠BAF=∠CAD,即可利用SAS证明△ABF≌△ACD,则结论可证;(2)先根据等腰直角三角形的性质和三角形内角和定理求出的度数,然后由△ABF≌△ACD得出∠ABF=∠ACD=45°,最后利用∠BFD=180°﹣∠ABF﹣∠ABC﹣∠BDF即可求解.【详解】(1)∵△ABC与△AFD为等腰直角三角形∴AB=AC,AF=AD,∠FAD=∠BAC=90°,∴∠BAF=∠CAD,且AB=AC,AF=AD∴△ABF≌△ACD(SAS)∴BF=DC(2)∵△ABC与△AFD为等腰直角三角形∴∠ABC=∠ACB=∠ADF=45°∵AB=AC=BD∴∠BDA=∠BAD=67.5°∴∠BDF=22.5°∵△ABF≌△ACD,∴∠ABF=∠ACD=45°∴∠BFD=180°﹣∠ABF﹣∠ABC﹣∠BDF=67.5°【点睛】本题主要考查等腰直角三角形的性质,全等三角形的判定及性质,三角形内角和定理,掌握等腰直角三角形的性质,全等三角形的判定及性质,三角形内角和定理是解题的关键.24、(1)B(0,4),D(0,-1);(2)();(3)存在,共有3个,E点为(4,)、(-6,-4)和【解析】

(1)利用y轴上的点的坐标特征即可得出结论.(2)先求出点M的坐标,再用三角形的面积之和即可得出结论.(3)分三种情况,根据题意只写出其中一个求解过程即可,利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.【详解】(1)将x=0代入y=x+4,y=+4解得将y=0代入y=-x-1,y=--1解得∴B(0,4),D(0,-1)(2)在解方程组得M点的坐标是,∵BD=5,当P点在轴左侧时,如图(1):;当P点在轴右侧时,如图(2):.总之,所求的函数关系式是()(3)存在,共有3个.当S=10时,求得P点为(-1,),若平行四边形以MB、MP为邻边,如图,BE∥MD,PE∥MB,可设直线BE的解析式为,将B点坐标代入得,所以BE的解析式为;同样可求得PE的解析式为,解方程组得E点为(4,)[{备注:同理可证另外两个点,另两个点的坐标为(-6,-4)和}【点睛】本题考查了一次函数的几何问题,掌握一次函数的性质、三角形的面积公式、对角线互相平分的四边形是平行四边形、线段的中点坐标的确定方法是解题的关键.25、(1);(1)①v=1;②S=(3)【解析】

(1)由条件可以得出∠BMP=∠NMQ,∠B=∠MNC,就可以得出△PBM∽△QNM;

(1)①根据直角三角形的性质和中垂线的性质BM、MN的值,再由△PBM∽△QNM就可以求出Q的运动速度;

②先由条件表示出AN、AP和AQ,再由三角形的面积公式就可以求出其解析式;

(3)延长QM到D,使MD=MQ,连接PD、BD、BQ、CD,就可以得出四边形BDCQ为平行四边形,再由勾股定理和中垂线的性质就可以得出PQ1=CQ1+BP1.【详解】解:(1)△PBM∽△QNM.

理由:

∵MQ⊥MP,MN⊥BC,

∴∠PMN+∠PMB=90°,∠QMN+∠PMN=90°,

∴∠PMB=∠QMN.

∵∠B+∠C=90°,∠C+∠MNQ=90°,

∴∠B=∠MNQ,

∴△PBM∽△QNM.(1)∵∠BAC=90°,∠ABC=60°,

∴BC=1AB=8

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论