2023年北京市东城区五十中学数学八年级第二学期期末复习检测试题含解析_第1页
2023年北京市东城区五十中学数学八年级第二学期期末复习检测试题含解析_第2页
2023年北京市东城区五十中学数学八年级第二学期期末复习检测试题含解析_第3页
2023年北京市东城区五十中学数学八年级第二学期期末复习检测试题含解析_第4页
2023年北京市东城区五十中学数学八年级第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在中,,若.则正方形与正方形的面积和为()A.25 B.144 C.150 D.1692.如图,将平行四边形纸片折叠,使顶点恰好落在边上的点处,折痕为,那么对于结论:①,②.下列说法正确的是()A.①②都错 B.①对②错 C.①错②对 D.①②都对3.已知是一元二次方程x2x10较大的根,则下面对的估计正确的是()A.01B.11.5C.1.52D.234.下列命题的逆命题成立的是()A.对顶角相等B.菱形的两条对角线互相垂直平分C.全等三角形的对应角相等D.如果两个实数相等,那么它们的绝对值相等5.如图,在平面直角坐标系中,的顶点在轴上,定点的坐标为,若直线经过点,且将平行四边形分割成面积相等的两部分,则直线的表达式()A. B. C. D.6.用配方法解方程时,配方变形结果正确的是()A. B. C. D.7.关于的一元二次方程(,是常数,且),()A.若,则方程可能有两个相等的实数根 B.若,则方程可能没有实数根C.若,则方程可能有两个相等的实数根 D.若,则方程没有实数根8.实数a在数轴上的位置如图所示,则化简后为()A.8 B.﹣8 C.2a﹣18 D.无法确定9.方程的根是A. B. C., D.,10.若是最简二次根式,则的值可能是()A.-2 B.2 C. D.811.在△ABC中,D、E分别是BC、AC中点,BF平分∠ABC.交DE于点F.AB=8,BC=6,则EF的长为()A.1 B.2 C.3 D.412.下列等式一定成立的是()A.-= B.∣2-=2- C. D.-=-4二、填空题(每题4分,共24分)13.若数据10,9,a,12,9的平均数是10,则这组数据的方差是_____14.若,则m=__15.若实数a、b满足a2—7a+2=0和b2—7b+2=0,则式子的值是____.16.如图,∠DAB=∠CAE,请补充一个条件:________________,使△ABC∽△ADE.17.计算:________________.18.某厂去年1月份的产值为144万元,3月份下降到100万元,求这两个月平均每月产值降低的百分率.如果设平均每月产值降低的百分率是x,那么列出的方程是___.三、解答题(共78分)19.(8分)如图,在中,,过点的直线,为边上一点,过点作,交直线于,垂足为,连接,.(1)求证:;(2)当为中点时,四边形是什么特殊四边形?说明你的理由;(3)当为中点时,则当的大小满足什么条件时,四边形是正方形?请直接写出结论.20.(8分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.21.(8分)四边形ABCD是正方形,AC是对角线,E是平面内一点,且,过点C作,且.连接AE、AF,M是AF的中点,作射线DM交AE于点N.(1)如图1,若点E,F分别在BC,CD边上.求证:①;②;(2)如图2,若点E在四边形ABCD内,点F在直线BC的上方,求与的和的度数.22.(10分)四边形中,,,,,垂足分别为、.(1)求证:;(2)若与相交于点,求证:.23.(10分)如图,在平行四边形ABCD中,点F在AD上,且AF=AB,AE平分∠BAD交BC于点E,连接EF,BF,与AE交于点O.(1)求证:四边形ABEF是菱形;(2)若四边形ABEF的周长为40,BF=10,求AE的长及四边形ABEF的面积.24.(10分)解不等式组,并求出其整数解.25.(12分)实践与探究如图,在平面直角坐标系中,直线交轴于点,交轴于点,点坐标为。直线与直线相交于点,点的横坐标为1。(1)求直线的解析式;(2)若点是轴上一点,且的面积是面积的,求点的坐标;26.探究:如图,在正方形中,点,分别为边,上的动点,且.(1)如果将绕点顺时针方向旋转.请你画出图形(旋转后的辅助线).你能够得出关于,,的一个结论是________.(2)如果点,分别运动到,的延长线上,如图,请你能够得出关于,,的一个结论是________.(3)变式:如图,将题目改为“在四边形中,,且,点,分别为边,上的动点,且”,请你猜想关于,,有什么关系?并验证你的猜想.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据勾股定理求出AC2+BC2,根据正方形的面积公式进行计算即可.【详解】在Rt△ABC中,AC2+BC2=AB2=169,则正方形与正方形的面积和=AC2+BC2=169,故选D.【点睛】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2、D【解析】

根据折叠重合图形全等,已经平行四边形的性质,可以求证①②均正确.【详解】折叠后点落在边上的点处,又平行四边形中,,又平行四边形中,,是平行四边形,.故选D.【点睛】本题综合考查全等三角形的性质、平行四边形的性质、平行线的判定、平行四边形的判定.3、C【解析】

先解一元二次方程方程,再求出5的范围,即可得出答案.【详解】解:解方程x2-x-1=0得:x=1±∵α是x2-x-1=0较大的根,∴α=1+∵2<5<3,∴3<1+5<4,∴32<1+5故选C.【点睛】本题考查解一元二次方程和估算无理数大小的知识,正确的求解方程和合理的估算是解题的关键.4、B【解析】

首先写出各个命题的逆命题,再进一步判断真假.【详解】A、对顶角相等的逆命题是相等的角是对顶角,是假命题;B、菱形的两条对角线互相垂直平分的逆命题是两条对角线互相垂直平分的四边形的菱形,是真命题;C、全等三角形的对应角相等的逆命题是对应角相等的三角形全等,是假命题;D、如果两个实数相等,那么它们的绝对值相等的逆命题是如果两个实数的绝对值相等,那么相等,是假命题;故选:B.【点睛】本题考查逆命题的真假性,是易错题.易错易混点:本题要求的是逆命题的真假性,学生易出现只判断原命题的真假,也就是审题不认真.5、A【解析】

由直线将平行四边形分割成面积相等的两部分可知直线必过平行四边形对角线的交点,交点即为BO中点,定点的坐标为,故其中点为,可用待定系数法确定直线DE的表达式.【详解】解:由直线将平行四边形分割成面积相等的两部分可知直线必过平行四边形对角线的交点,交点即为BO中点,定点的坐标为,故其中点为,设直线的表达式为,将点,代入得:解得所以直线的表达式为故答案为:A【点睛】本题主要考查了平行四边形中心对称的性质及待定系数法求直线表达式,明确直线过平行四边形对角线的交点是解题的关键.6、C【解析】

根据配方法的步骤先把常数项移到等号的右边,再在等式两边同时加上一次项系数一半的平方,配成完全平方的形式,从而得出答案.【详解】∵∴x2+6x=1,∴x2+6x+9=1+9,∴(x+3)2=10;故选:C.【点睛】本题考查了配方法解一元二次方程,掌握配方法的步骤是解题的关键;配方法的一般步骤是:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.7、C【解析】

求出∆=b2+8a,根据b2+8a的取值情况解答即可.【详解】∵,∴,∴∆=b2+8a,A.∵a>0,∴b2+8a>0,∴方程一定有两个相等的实数根,故A、B错误;C.当a<0,但b2+8a≥0时,方程有实根,故C正确,D错误.故选C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.8、A【解析】

先依据a在数轴上的位置确定出a﹣5、a﹣13的正负,然后再依据二次根式的性质、绝对值的性质进行化简即可.【详解】由题意可知6<a<12,∴a﹣5>0、a﹣13<0,∴+=|a﹣5|+|a﹣13|=a﹣5+13﹣a=1.故选A.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.9、C【解析】

由题意推出x=0,或(x-1)=0,解方程即可求出x的值【详解】,,,故选.【点睛】此题考查解一元二次方程-因式分解法,掌握运算法则是解题关键10、B【解析】

直接利用最简二次根式的定义分析得出答案.【详解】∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中-1,,8都不合题意,∴a的值可能是1.故选B.【点睛】此题主要考查了最简二次根式的定义,正确把握定义是解题关键.11、A【解析】

利用中位线定理,得到DE∥AB,根据平行线的性质,可得∠EDC=∠ABC,再利用角平分线的性质和三角形内角外角的关系,得到DF=DB,进而求出DF的长,易求EF的长度.【详解】∵在△ABC中,D、E分别是BC、AC的中点,AB=8,∴DE∥AB,DE=AB=3.∴∠EDC=∠ABC.∵BF平分∠ABC,∴∠EDC=2∠FBD.∵在△BDF中,∠EDC=∠FBD+∠BFD,∴∠DBF=∠DFB,∴FD=BD=BC=×6=2.∴FE=DE-DF=3-2=3.故选A.【点睛】本题考查了三角形中位线定理和等腰三角形的判定于性质.三角形的中位线平行于第三边,当出现角平分线,平行线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.12、D【解析】分析:根据二次根式的运算一一判断即可.详解:A.故错误.B.故错误.C.,故错误.D.正确.故选D.点睛:考查二次根式的运算,根据运算法则进行运算即可.二、填空题(每题4分,共24分)13、1.2【解析】分析:先由平均数的公式计算出a的值,再根据方差的公式计算即可.详解:∵数据10,9,a,12,9的平均数是10,∴(10+9+a+12+9)÷5=10,解得:a=10,∴这组数据的方差是15[(10−10)²+(9−10)²+(10−10)²+(12−10)²+(9−10)²]=1.2.故选B.点睛:本题考查方差和平均数,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14、1【解析】

利用多项式乘以多项式计算(x-m)(x+2)可得x2+(2-m)x-2m,然后使x的一次项系数相等即可得到m的值.【详解】∵(x-m)(x+2)=x2+(2-m)x-2m,

∴2-m=-6,

m=1,

故答案是:1.【点睛】考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.15、.【解析】

由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,可把a,b看成是方程x2-7x+2=0的两个根,再利用根与系数的关系求解即可.【详解】解:由实数a,b满足条件a2-7a+2=0,b2-7b+2=0,∴可把a,b看成是方程x2-7x+2=0的两个根,∴a+b=7,ab=2,∴===.故答案为:.【点睛】本题考查了根与系数的关系,属于基础题,根据题意把a,b看成是方程的两个根后根据根与系数的关系求出a+b,ab是解题的关键.16、解:∠D=∠B或∠AED=∠C.【解析】

根据相似三角形的判定定理再补充一个相等的角即可.【详解】解:∵∠DAB=∠CAE

∴∠DAE=∠BAC

∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.

故答案为∠D=∠B(答案不唯一).17、【解析】

二次根式相乘时,根号不变,直接把根号里面的数相乘,最后化简.二次根式相加减时,只有同类的二次根式才能相加减,根号部分不变,把整数部分相加减.【详解】原式=故答案为【点睛】本题考察了二次根式的乘法和减法,这里需要注意的是,无论加减乘除,最后都要化为最简二次根式.18、144(1﹣x)2=1.【解析】

设平均每月产值降低的百分率是x,那么2月份的产值为144(1-x)万元,3月份的产值为144(1-x)2万元,然后根据3月份的产值为1万元即可列出方程.【详解】设平均每月产值降低的百分率是x,则2月份的产值为144(1﹣x)万元,3月份的产值为144(1﹣x)2万元,根据题意,得144(1﹣x)2=1.故答案为144(1﹣x)2=1.【点睛】本题考查由实际问题抽象出一元二次方程-求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到3月份的产值的等量关系是解决本题的关键.三、解答题(共78分)19、(1)见解析;(2)四边形为菱形,理由见解析;(3)45°【解析】

(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,再根据,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【详解】(1)证明:∵∴又∵∴又∵∴四边形为平行四边形∴(2)四边形为菱形,理由如下:∵为中点∴,由(1)得:∴四边形为平行四边形又∵∴为菱形(3)当∠A=45°时,四边形BECD是正方形,理由是:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即时,四边形为正方形【点睛】此题考查正方形的判定,平行四边形的判定与性质,菱形的判定,解题关键在于求出四边形ADEC是平行四边形20、(1)y=﹣2x+2(2)①y=4x+3②24③S=2m-1.【解析】

(1)利用待定系数法可求函数的解析式;(2)①根据题意直接代入函数的解析式求出n,得到D点的坐标,然后由A、D点的坐标,由待定系数法求出AD的解析式;②构造三角形直接求面积;③由点M在直线y=-2x+2得到M的坐标,构造三角形,然后分类求解即可.【详解】解:(1)∵直线y=﹣2x+a与y轴交于点C(0,2),∴a=2,∴该直线解析式为y=﹣2x+2.(2)①∵点D(﹣1,n)在直线BC上,∴n=﹣2×(﹣1)+2=8,∴点D(﹣1,8).设直线AD的解析式为y=kx+b,将点A(﹣3,0)、D(﹣1,8)代入y=kx+b中,得:,解得:,∴直线AD的解析式为y=4x+3.②令y=﹣2x+2中y=0,则﹣2x+2=0,解得:x=3,∴点B(3,0).∵A(﹣3,0)、D(﹣1,8),∴AB=2.S△ABD=AB•yD=×2×8=24③∵点M在直线y=-2x+2上,∴M(m,-2m+2),当m<3时,S=即;当m>3时,即S=2m-1.21、(1)①见解析;②见解析;(2)【解析】

(1)根据已知及正方形的性质,全等三角形的判定,全等三角形的性质的计算,可知①∠BAE=∠DAF是否成立;可知②DN⊥AE是否成立;(2)根据已知及正方形的性质,全等三角形的判定,全等三角形的性质的计算,求出​∠EAC与∠ADN的和的度数.【详解】(1)证明:①在正方形ABCD中,∴,.∵,∴.∴.∴.②∵M是AF的中点,∴,由①可知.∵.∵∴∴(2)解:延长AD至H,使得,连结FH,CH.∵,∴.在正方形ABCD屮,AC是对角线,∴.∴.∴.∴又∵,∴.∴∵M是AF的中点,D是AH的中点,∴.∴∴【点睛】本题主要考查了正方形的性质,全等三角形的判定,全等三角形的性质的应用,解题的关键是熟练掌握正方形的性质,全等三角形的判定,全等三角形的性质的计算.22、(1)证明见解析;(2)证明见解析.【解析】

(1)根据已知条件得到BF=DE,由垂直的定义得到∠AED=∠CFB=90°,根据全等三角形的判定定理即可得到结论;(2)如图,连接AC交BD于O,根据全等三角形的性质得到∠ADE=∠CBF,由平行线的判定得到AD∥BC,根据平行四边形的性质即可得到结论.【详解】证明:(1)∵BE=DF,∴BE-EF=DF-EF,即BF=DE,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在Rt△ADE与Rt△CBF中,,∴Rt△ADE≌Rt△CBF;(2)如图,连接AC交BD于O,∵Rt△ADE≌Rt△CBF,∴∠ADE=∠CBF,∴AD∥BC,又AD=BC,∴四边形ABCD是平行四边形,∴AO=CO.【点睛】本题考查了全等三角形的判定和性质,平行四边形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.23、(1)见解析;(2)AE=10,四边形ABEF的面积=50.【解析】

(1)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由AF=AB得出BE=AF,即可得出结论.(2)根据菱形的性质可得AB=10,AE⊥BF,BO=FB=5,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.菱形的面积=对角线乘积的一半.【详解】(1)证明∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,且AF=AB,∴BE=AF,又∵BE∥AF,∴四边形ABEF是平行四边形,∵AF=AB,∴四边形ABEF是菱形;(2)∵四边形ABEF为菱形,且周长为40,BF=10∴AB=BE=EF=AF=10,AE⊥BF,BO=FB=5,AE=2AO,在Rt△AOB中,AO=,∴AE=2AO=10.∴四边形ABEF的面积=BF•AE=×10×10=50【点睛】本题主要考查了菱形的性质和判定,关键是掌握一组邻边相等的平行四边形是菱形,菱形对角线互相垂直且平分.24、,的整数解是3,4【解析】

求出不等式组的解集,写出解集范围内的整数即可.【详解】解:解不等式①得:解不等式②得:∴该不等式的解集是所以的整数解是3,4,故答案为:,的整数解是3,4【点睛】本题考查了求一元一次不等式组的整数解,正确求出不等式组的解集是解题的关键.25、(1);(2)点的坐标为或【解析】

(1)先求出C点坐标,再利用待定系数法确定函数关系式即可求解;(2)先求出A点坐标,再过点作轴,垂足为点;过点作轴,垂足为点,设点的坐标为,根据三角形的面积即可列出式子求解;【详解】解:(1)∵点在上,且横坐标是1,∴把代入中,得,∴点的坐标为,设直线的解析式为,将点的坐标代入得解得∴直线的解析式为;(2)∵点是直线与轴的交点,∴把代入中得,,∴点坐标为,过点作轴,垂足为点;过点作轴,垂足为点,由点的坐标为可得,,设点的坐标为,依题意得,,即,解得,,∴点的坐标为或;【点睛】此

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论