版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,正方形ABCD的边长是4,M在DC上,且DM=1,N是AC边上的一动点,则ΔDNM周长的最小值是()A.3 B.4 C.5 D.62.在正方形ABCD的外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.450 B.600 C.750 D.12003.关于的分式方程的解为正实数,则实数的取值范围是A.且 B.且 C.且 D.且4.在中招体育考试中,某校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:=8.2,=21.7,=15,=17.2,则四个班体育考试成绩最不稳定的是()A.甲班 B.乙班 C.丙班 D.丁班5.如图,过点的一次函数的图象与正比例函数的图象相交于点则这个一次函数的解析式是()A. B. C. D.6.直线l1:y=ax+b与直线l2:y=mx+n在同一平面直角坐标系中的图象如图所示,则关于x的不等式ax+b<mx+n的解集为()A.x>﹣2 B.x<1 C.x>1 D.x<﹣27.某种出租车的收费标准是:起步价8元(即距离不超过,都付8元车费),超过以后,每增加,加收1.2元(不足按计).若某人乘这种出租车从甲地到乙地经过的路程是,共付车费14元,那么的最大值是().A.6 B.7 C.8 D.98.如图,平行四边形ABCD中,BD⊥AD,∠A=30°,BD=4,则CD的长为()A.2 B.4 C.4 D.89.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于点D,DE⊥AB于点E,且AB=10,则△EDB的周长是()A.4 B.6 C.8 D.1010.若点P(a,2)在第二象限,则a的值可以是()A. B.0 C.1 D.2二、填空题(每小题3分,共24分)11.如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.12.如图,▱ABCD的对角线AC、BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为_____.13.在市业余歌手大奖赛的决赛中,参加比赛的名选手成绩统计如图所示,则这名选手成绩的中位数是__________.14.汽车行驶前油箱中有汽油52公升,已知汽车每百公里耗油8公升,油箱中的余油量Q(公升)(油箱中剩余的油量不能少于4公升)与它行驶的距离s(百公里)之间的函数关系式为_____(注明s的取值范围).15..若2m=3n,那么m︰n=.16.如图,点B是反比例函数在第二象限上的一点,且矩形OABC的面积为4,则k的值为_______________.17.如图,正方形的对角线与相交于点,正方形绕点旋转,直线与直线相交于点,若,则的值是____.18.每本书的厚度为,把这些书摞在一起总厚度(单位:随书的本数的变化而变化,请写出关于的函数解析式__,(不用写自变量的取值范围)三、解答题(共66分)19.(10分)若关于x、y的二元一次方程组的解满足x+y>0,求m的取值范围.20.(6分)如图,在平面直角坐标系中,直线交轴于点,交轴于点.点在轴的负半轴上,且的面积为8,直线和直线相交于点.(1)求直线的解析式;(2)在线段上找一点,使得,线段与相交于点.①求点的坐标;②点在轴上,且,直接写出的长为.21.(6分)解不等式组,并把它的解集在数轴上表示出来.22.(8分)如图,在平面直角坐标系xOy中,直线y=--x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长和点C的坐标;(2)求直线CD的表达式.23.(8分)先化简,再求值:,其中的值从不等式组的整数解中选取.24.(8分)先化简,再求值,其中.25.(10分)如图,在四边形ABCD中,AB=4,BC=3,CD=12,AD=13,∠B=90°,连接AC.求四边形ABCD的面积.26.(10分)列方程(组)及不等式(组)解应用题:水是生命之源.为了鼓励市民节约用水,江夏区水务部门实行居民用水阶梯式计量水价政策;若居民每户每月用水量不超过10立方米,每立方米按现行居民生活用水水价收费(现行居民生活用水水价=基本水价+污水处理费);若每户每月用水量超过10立方米,则超过部分每立方米在基本水价基础上加价100%,但每立方米污水处理费不变.下面表格是某居民小区4月份甲、乙两户居民生活用水量及缴纳生活用水水费的情况统计:4月份居民用水情况统计表(注:污水处理的立方数=实际生活用水的立方数)用水量(立方米)缴纳生活用水费用(元)甲用户827.6乙用户1246.3(1)求每立方米的基本水价和每立方米的污水处理费各是多少?(2)设这个小区某居民用户5月份用水立方米,需要缴纳的生活用水水费为元.若他5月份生活用水水费计划不超过64元,该用户5月份最多可用水多少立方米?
参考答案一、选择题(每小题3分,共30分)1、D【解析】
由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为使DN+MN最小的点,在Rt△BCM中利用勾股定理求出BM的长即可.【详解】解:∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,则BM的长即为DN+MN的最小值,又CM=CD−DM=4−1=3,在Rt△BCM中,BM=CM2故△DMN周长的最小值=5+1=6,故选:D.【点睛】本题考查的是轴对称−最短路线问题及正方形的性质,根据点B与点D关于直线AC对称,可知BM的长即为DN+MN的最小值是解答此题的关键.2、B【解析】分析:根据正方形的性质及等边三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.详解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:B.点睛:本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.3、D【解析】
先根据分式方程的解法,求出用m表示x的解,然后根据分式有解,且解为正实数构成不等式组求解即可.【详解】去分母,得x+m+2m=3(x-2)解得x=∵关于x的分式方程的解为正实数∴x-2≠0,x>0即≠2,>0,解得m≠2且m<6故选D.点睛:此题主要考查了分式方程的解和分式方程有解的条件,用含m的式子表示x解分式方程,构造不等式组是解题关键.4、B【解析】
方差越小数据越稳定,根据方差的大小即可得到答案.【详解】∵8.2<15<17.2<21.7,∴乙班的体育考试成绩最不稳定,故选:B.【点睛】此题考查方差的运用,方差考查数据稳定性,方差越小数据越稳定,方差越大数据越不稳定.5、A【解析】
根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【详解】解:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组
,解得
,则这个一次函数的解析式为y=-x+3,故选:A.【点睛】此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一次函数的特点,来列出方程组,求出未知数,即可写出解析式.6、B【解析】
由图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式ax+b<mx+n解集.【详解】解:观察图象可知,当x<1时,ax+b<mx+n,∴不等式ax+b<mx+n的解集是x<1故选B.【点睛】本题考查了一次函数与一元一次不等式的关系,根据交点得到相应的解集是解决本题的关键.7、C【解析】
已知从甲地到乙地共需支付车费14元,从甲地到乙地经过的路程为x千米,首先去掉前3千米的费用,从而根据题意列出不等式,从而得出答案.【详解】设某人从甲地到乙地经过的路程是x千米,根据题意,得:8+1.2(x−3)⩽14,解得:x⩽8,即x的最大值为8km,故选C.【点睛】此题考查一元一次不等式的应用,解题关键在于列出方程8、D【解析】
根据30°所对的直角边是斜边的一半即可求出AB,然后利用平行四边形的性质即可求出结论.【详解】解:∵BD⊥AD,∴△ABD为直角三角形,在Rt△ABD中,BD=4,∠A=30°,∴AB=2BD=8,∵四边形ABCD为平行四边形,∴CD=AB=8,故选:D.【点睛】此题考查的是直角三角形的性质和平行四边形的性质,掌握30°所对的直角边是斜边的一半和平行四边形的对边相等是解决此题的关键.9、D【解析】
先证出Rt△ACD≌Rt△AED,推出AE=AC,△DBE的周长=DE+EB+BD=AB,即可求解.【详解】解:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,
∴∠C=∠AED=90°,CD=DE,
在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED,
∴AE=AC,
∴△DBE的周长
=DE+EB+BD
=CD+DB+EB
=BC+EB
=AC+EB
=AE+EB
=AB
=10,
故选D.【点睛】本题考查了角平分线性质,全等三角形的性质和判定的应用,能求出AE=AC,CD=DE是解此题的关键,注意:角平分线上的点到角的两边的距离相等.10、A【解析】
根据第二象限内点的横坐标是负数判断.【详解】解:∵点P(a,1)在第二象限,∴a<0,∴-1、0、1、1四个数中,a的值可以是-1.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题(每小题3分,共24分)11、2或.【解析】
分别从当Q运动到E和B之间与当Q运动到E和C之间去分析,根据平行四边形的性质,可得方程,继而可求得答案.【详解】解:E是BC的中点,BE=CE=BC=12=6,①当Q运动到E和C之间,设运动时间为t,则AP=t,DP=AD-AP=4-t,CQ=2t,EQ=CE-CQ=6-2tt=6-2t,解得:t=2;②当Q运动到E和B之间,设运动时间为t,则AP=t,DP=AD-AP=4-t,CQ=2t,EQ=CQ-CE=2t-6,t=2t-6,解得:t=6(舍),③P点当D后再返回点A时候,Q运动到E和B之间,设运动时间为t,则AP=4-(t-4)=8-t,EQ=2t-6,8-t=2t-6,,当运动时间t为2、秒时,以点P,Q,E,A为顶点的四边形是平行四边形.故答案为:2或.【点睛】本题主要考查平行四边形的性质及解一元一次方程.12、1【解析】
首先证明OE=BC,再由AE+EO=4,推出AB+BC=8,然后计算周长即可解答.【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=1,故答案为:1.【点睛】本题考查了平行四边形的性质、三角形中位线定理,熟练掌握是解题的关键.13、8.5【解析】
根据中位数的定义找出最中间的两个数,再求出它们的平均数即可.【详解】根据图形,这个学生的分数为:,,,,,,,,,,则中位数为.【点睛】本题考查求中位数,解题的关键是掌握求中位数的方法.14、Q=52﹣8s(0≤s≤6).【解析】
求余量与行驶距离之间的关系,每行使百千米耗油8升,则行驶s百千米共耗油8s,所以余量为Q=52﹣8s,根据油箱中剩余的油量不能少于4公升求出s的取值范围.【详解】解:∵每行驶百千米耗油8升,∴行驶s百公里共耗油8s,∴余油量为Q=52﹣8s;∵油箱中剩余的油量不能少于4公升,∴52﹣8s≥4,解得s≤6,∴s的取值范围为0≤s≤6.故答案为:Q=52﹣8s(0≤s≤6).【点睛】本题考查一次函数在是实际生活中的应用,在求解函数自变量范围的时候,一定要考虑变量在本题中的实际意义.15、3︰2【解析】
根据比例的性质将式子变形即可.【详解】,,故答案为:3︰2点睛:此题考查比例的知识16、-1【解析】
根据矩形的面积求出xy=−1,即可得出答案.【详解】设B点的坐标为(x,y),∵矩形OABC的面积为1,∴−xy=1,∴xy=−1,∵B在上,∴k=xy=−1,故答案为:-1.【点睛】本题考查了矩形的性质和反比例函数图象上点的坐标特征,能求出xy=−1和k=xy是解此题的关键.17、【解析】
如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.首先证明∠CPB=90°,求出DT,PT即可解决问题.【详解】解:如图,设EF交AB于M,EH交BC于N,PF交EH于O,作PT⊥AD于T交BC于R.∵四边形ABCD是正方形,∴AC⊥BD,AE=EB,∠EAM=∠EBN=45°,∵四边形EFGH是正方形,∴∠MEN=∠AEB=90°,∴∠AEM=∠BEN,∴△AEM≌△BEN(ASA),∴AM=BN,EM=EN,∠AME=∠BNE,∵AB=BC,EF=EH,∴FM=NH,BM=CN,∵∠FMB=∠AME,∠CNH=∠BNE,∴∠FMB=∠CNH,∴△FMB≌△HNC(SAS),∴∠MFB=∠NHC,∵∠EFO+∠EOF=90°,∠EOF=∠POH,∴∠POH+∠PHO=90°,∴∠OPH=∠BPC=90°,∵∠DBP=75°,∠DBC=45°,∴∠CBP=30°,∵BC=AB=2,∴PB=BC•cos30°=,PR=PB=,RC=PR•tan30°=,∵∠RTD=∠TDC=∠DCR=90°,∴四边形TDCR是矩形,∴TD=CR=,TR=CD=AB=2,在Rt△PDT中,PD2=DT2+PT2=,故答案为.【点睛】本题考查全等三角形的判定和性质,旋转变换,正方形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.18、【解析】
依据这些书摞在一起总厚度y(cm)与书的本数x成正比,即可得到函数解析式.【详解】解:每本书的厚度为,这些书摞在一起总厚度与书的本数的函数解析式为,故答案为:.【点睛】本题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.三、解答题(共66分)19、m>﹣1【解析】
两方程相加可得x+y=m+1,根据题意得出关于m的方程,解之可得.【详解】解:将两个方程相加即可得1x+1y=1m+4,则x+y=m+1,根据题意,得:m+1>0,解得m>﹣1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20、(1)直线的解析式为;(2)①,,②满足条件的的值为8或.【解析】
(1)求出B,C两点坐标,利用待定系数法即可解决问题.(2)①连接AD,利用全等三角形的性质,求出直线DF的解析式,构建方程组确定交点E坐标即可.②如图1中,将线段FD绕点F顺时针旋转90°得到FG,作DE⊥y轴于E,GH⊥y轴于F.根据全等三角形,分两种情形分别求解即可.【详解】(1)直线交轴于点,交轴于点,,,点在轴的负半轴上,且的面积为8,,,则,设直线的解析式为即,解得,故直线的解析式为.(2)①连接.点是直线和直线的交点,故联立,解得,即.,故,且,,,,,,即,可求直线的解析式为,点是直线和直线的交点,故联立,解得,即,.②如图1中,将线段绕点顺时针旋转得到,作轴于,轴于.则,,,,,直线的解析式为,设直线交轴于,则,,.作,则,可得直线的解析式为,,,综上所述,满足条件的的值为8或.【点睛】本题考查用待定系数法求一次函数的解析式,两条直线的交点,利用坐标求线段长度证全等,灵活运用一次函数以及全等是解题的关键.21、,数轴见解析.【解析】试题分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.试题解析:解:解不等式5x+1>3(x﹣1),得:x>﹣2,解不等式x﹣1≤7﹣x,得:x≤4,则不等式组的解集为﹣2<x≤4,将解集表示在数轴上如下:22、(1)AB的长10;点C的坐标为(16,0)(2)直线CD的解析式.【解析】
解:(1)在平面直角坐标系xOy中,直线与x轴,y轴分别交于点A,点B,当x=0时,y=,所以B点的坐标为(0,8),所以OA=8,当y=0,则,解得x=6,那么A点的坐标为(6,0),所以OB=6,因此AB的长=;若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,点B的坐标为(0,8),根据折叠的特征AB=AC,所以OC=OA+AC=6+10=16,所以点C的坐标为(16,0)(2)点D在y轴的负半轴上,由(1)知B点的坐标为(0,8),所以点D的坐标为(0,-8),由(1)知点C的坐标为(16,0),因为直线CD过点C、D,所以设直线CD的解析式为y=kx+b,则,解得,所以直线CD的解析式考点:一次函数,勾股定理,折叠点评:本题考查一次函数,勾股定理,折叠,解答本题需要掌握用待定系数法求一次函数的解析式,熟悉勾股定理的内容
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 对企业有利的加班合同(2篇)
- 二零二五年智能家电技术服务合同范本3篇
- 宜宾酒王二零二五年度800亿控量保价市场占有率提升合同2篇
- 二零二五年度酒店会议住宿套餐定制合同2篇
- 2025年度电子信息产业设备采购与技术服务合同3篇
- 二零二五版工程款分期支付还款协议合同范本3篇
- 二零二五版碧桂园集团施工合同示范文本6篇
- 二零二五版豆腐出口贸易代理合同3篇
- 二零二五年度韵达快递业务承包合同及综合运营支持协议3篇
- 2024年物流运输承包合同3篇
- 氧化铝生产工艺教学拜耳法
- 2023年十八项医疗核心制度考试题与答案
- 气管切开患者气道湿化的护理进展资料 气管切开患者气道湿化
- 管理模板:某跨境电商企业组织结构及部门职责
- 底架总组装工艺指导书
- 简单临时工劳动合同模板(3篇)
- 聚酯合成反应动力学
- 自动控制原理全套课件
- 上海科技大学,面试
- 《五年级奥数总复习》精编课件
- TS2011-16 带式输送机封闭栈桥图集
评论
0/150
提交评论