2023年江苏省兴化市顾庄区八年级数学第二学期期末学业质量监测模拟试题含解析_第1页
2023年江苏省兴化市顾庄区八年级数学第二学期期末学业质量监测模拟试题含解析_第2页
2023年江苏省兴化市顾庄区八年级数学第二学期期末学业质量监测模拟试题含解析_第3页
2023年江苏省兴化市顾庄区八年级数学第二学期期末学业质量监测模拟试题含解析_第4页
2023年江苏省兴化市顾庄区八年级数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是()A.六边形 B.八边形 C.十二边形 D.十六边形2.如图,在Rt△DEF中,∠EFD=90°,∠DEF=30°,EF=3cm,边长为2cm的等边△ABC的顶点C与点E重合,另一个顶点B(在点C的左侧)在射线FE上.将△ABC沿EF方向进行平移,直到A、D、F在同一条直线上时停止,设△ABC在平移过程中与△DEF的重叠面积为ycm2,CE的长为xcm,则下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.3.在平面直角坐标系中,将抛物线向右平移2个单位,得到的抛物线的解析式是().A. B. C. D.4.下列各式计算正确的是()A.(2a2)•(3a3)=6a6 B.6a2b÷2a=3bC.3a2﹣2a2=a2 D.+=5.在平行四边形中,,则的度数为()A.110° B.100° C.70° D.20°6.如图,将一个含有角的直角三角板的直角顶点放在一张宽为的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成角,则三角板最长的长是()A. B. C. D.7.等腰三角形的腰长为5cm,底边长为6cm,则该三角形的面积是()A.16 B. C.32 D.8.若,则的值()A. B. C.–7 D.79.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm10.已知空气单位体积质量是,将用科学记数法表示为()A. B. C. D.二、填空题(每小题3分,共24分)11.小明用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每枝钢笔5元,那么小明最多能买________枝钢笔.12.计算:______________13.如图,在△ABC中,∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,分别交AB,AC于点D,E,若BC=2,则DE=___.14.当___________________时,关于的分式方程无解15.如图,己知:,,,,则_______.16.将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为.17.如图,在边长为1的正方形网格中,两格点之间的距离为__________1.(填“”,“”或“”).18.若,则分式_______.三、解答题(共66分)19.(10分)如图,在△ABC中,∠CAB的平分线AD与BC垂直平分线DE交于点D,DM⊥AB于点M,DN⊥AC,交AC的延长线于点N,求证:BM=CN.20.(6分)如图,中,是上的一点,若,,,,求的面积.21.(6分)已知:如图,在▱ABCD中,设=,=.(1)填空:=(用、的式子表示)(2)在图中求作+.(不要求写出作法,只需写出结论即可)22.(8分)如图,AD是△ABC的角平分线,线段AD的垂直平分线分别交AB和AC于点E、F,连接DE、DF.(1)试判定四边形AEDF的形状,并证明你的结论.(2)若DE=13,EF=10,求AD的长.(3)△ABC满足什么条件时,四边形AEDF是正方形?23.(8分)如图,在矩形中,点为上一点,连接、,.(1)如图1,若,,求的长.(2)如图2,点是的中点,连接并延长交于,为上一点,连接,且,求证:.24.(8分)已知,,求.25.(10分)已知:AC是平行四边形ABCD的对角线,且BE⊥AC,DF⊥AC,连接DE、BF.求证:四边形BFDE是平行四边形.26.(10分)如图,在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P从点A出发,以每秒2cm的速度沿线段AB向点B方向运动,点Q从点D出发,以每秒3cm的速度沿线段DC向点C运动,已知动点P、Q同时出发,点P到达B点或点Q到达C点时,P、Q运动停止,设运动时间为t(秒).(1)求CD的长;(2)当四边形PBQD为平行四边形时,求t的值;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得PQ⊥AB?若存在,请求出t的值并说明理由;若不存在,请说明理

参考答案一、选择题(每小题3分,共30分)1、B【解析】

由平面图形的折叠及立体图形的表面展开图的特点解结合实际操作解题.【详解】解:此题需动手操作,可以通过折叠再减去4个重合,得出是八边形.故选:B.【点睛】本题主要考查了与剪纸相关的知识:动手操作的能力是近几年常考的内容,要掌握熟练.2、A【解析】

分0≤x≤2、2<x≤3、3<x≤4三种情况,分别求出函数表达式即可求解.【详解】解:①当0≤x≤2时,如图1,设AC交ED于点H,则EC=x,∵∠ACB=60°,∠DEF=30°,∴∠EHC=90°,y=S△EHC=×EH×HC=ECsin∠ACB×EC×cos∠ACB=CE2=x2,该函数为开口向上的抛物线,当x=2时,y=;②当2<x≤3时,如图2,设AC交DE于点H,AB交DE于点G,同理△AHG为以∠AHG为直角的直角三角形,EC=x,EB=x﹣2=BG,则AG=2﹣BG=2﹣(x﹣2)=4﹣x,边长为2的等边三角形的面积为:2×=;同理S△AHG=(4﹣x)2,y=S四边形BCHG=S△ABC﹣S△AHG=﹣(x﹣4)2,函数为开口向下的抛物线,当x=3时,y=,③当3<x≤4时,如图3,同理可得:y=﹣[(4﹣x)2+(x﹣3)2]=﹣x2+4x﹣,函数为开口向下的抛物线,当x=4时,y=;故选:A.【点睛】本题考查的是动点问题的函数图象,此类题目通常需要分不同时间段确定函数的表达式,进而求解.3、B【解析】试题解析:将抛物线向右平移2个单位,得到的抛物线的解析式是故选B.点睛:二次函数图像的平移规律:左加右减,上加下减.4、C【解析】

直接利用二次根式的加减运算法则以及同底数幂的乘除运算法则和合并同类项运算法则分别判断得出答案.【详解】A、(2a2)•(3a3)=6a5,故此选项错误;B、6a2b÷2a=3ab,故此选项错误;C、3a2﹣2a2=a2,正确;D、+,无法计算,故此选项错误;故选:C.【点睛】此题主要考查了二次根式的加减运算以及同底数幂的乘除运算和合并同类项运算,正确掌握相关运算法则是解题关键.5、A【解析】

根据平行四边形邻角互补进行求解即可.【详解】因为四边形ABCD是平行四边形,所以∠B=180°-∠A=110°,故选A.【点睛】本题考查了平行四边形的性质,注意掌握平行四边形的邻角互补,对角相等.6、D【解析】

过另一个顶点C作垂线CD如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.【详解】过点C作CD⊥AD,∴CD=3,

在直角三角形ADC中,

∵∠CAD=30°,

∴AC=2CD=2×2=4,

又∵三角板是有45°角的三角板,

∴AB=AC=4,

∴BC2=AB2+AC2=42+42=32,

∴BC=,

故选D.【点睛】本题考查等腰直角三角形和含30度角的直角三角形,解题的关键是掌握等腰直角三角形和含30度角的直角三角形.7、D【解析】

作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.【详解】如图,作底边BC上的高AD,则AB=5cm,BD=×6=3cm,∴AD=,∴三角形的面积为:×6×4=12cm.故选D【点睛】此题考查等腰三角形的性质,勾股定理,解题关键在于作出图形8、D【解析】

将两边平方后,根据完全平方公式化简即可得出结果.【详解】解:∵∴∴即:故选:D.【点睛】本题考查了完全平方公式的应用,熟悉完全平方公式的性质是解题的关键.9、D【解析】

根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.10、C【解析】

由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:=.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(每小题3分,共24分)11、1【解析】

解:设小明一共买了x本笔记本,y支钢笔,根据题意,可得,可求得y≤因为y为正整数,所以最多可以买钢笔1支.故答案为:1.12、3【解析】

根据负整数指数幂,零指数幂进行计算即可解答【详解】原式=2×2-1=3故答案为:3【点睛】此题考查负整数指数幂,零指数幂,掌握运算法则是解题关键13、1【解析】

连接DC,由垂直平分线的性质可得DC=DA,易得∠ACD=∠A=30°,∠BCD=30°,利用锐角三角函数定义可得CD的长,利用“在直角三角形中,30°角所对的直角边等于斜边的一半.”可得DE的长.【详解】解:连接DC,∵∠B=90°,∠A=30°,DE是斜边AC的垂直平分线,∴DC=DA,∴∠ACD=∠A=30°,∠BCD=30°,,∵∠BCD=30°,,∴DE=1,故答案为1.【点睛】本题主要考查了直角三角形的性质和垂直平分线的性质,做出恰当的辅助线是解答此题的关键.14、m=1、m=-4或m=6.【解析】

方程两边都乘以(x+2)(x-2)把分式方程化为整式方程,当分式方程有增根或分式方程化成的整式方程无解时原分式方程无解,根据这两种情形即可计算出m的值.【详解】解:方程两边都乘以(x+2)(x-2)去分母得,

2(x+2)+mx=3(x-2),

整理得(1-m)x=10,∴当m=1时,此整式方程无解,所以原分式方程也无解.

又当原分式方程有增根时,分式方程也无解,∴当x=2或-2时原分式方程无解,

∴2(1-m)=10或-2(1-m)=10,

解得:m=-4或m=6,

∴当m=1、m=-4或m=6时,关于x的方程无解.【点睛】本题考查了分式方程的无解条件.分式方程无解有两种情形:一是分式方程有增根;二是分式方程化成的整式方程无解.15、15【解析】

首先过D作直线AC的平行线DK,交l2于点N,再利用相似比例可得AC的长.【详解】解:过D作直线AC的平行线DK,交l2于点N故答案为15.【点睛】本题主要考查平行线的性质,再结合考查相似比例的计算,难度系数较小,关键在于作AC的平行线.16、【解析】因为阴影部分的面积=S正方形BCQW﹣S梯形VBCF,根据已知求得梯形的面积即不难求得阴影部分的面积了.解:∵VB∥ED,三个正方形的边长分别为2、3、5,∴VB:DE=AB:AD,即VB:5=2:(2+3+5)=1:5,∴VB=1,∵CF∥ED,∴CF:DE=AC:AD,即CF:5=5:10∴CF=2.5,∵S梯形VBFC=(BV+CF)•BC=,∴阴影部分的面积=S正方形BCQW﹣S梯形VBCF=.故答案为.17、<【解析】

根据勾股定理即可得到结论.【详解】解:点A,B之间的距离d=<1,

故答案为:<.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.18、【解析】

先把化简得到,然后把分式化简,再把看作整体,代入即可.【详解】∵,化简可得:,∵,把代入,得:原式=;故答案为:.【点睛】本题考查了分式的化简求值,解题的关键是利用整体代入的思想进行解题.三、解答题(共66分)19、见解析【解析】

根据角平分线的性质和线段垂直平分线的性质可得到DM=DN,DB=DC,根据HL证明△DMB≌△DNC,即可得出BM=CN.【详解】证明:连接BD,∵AD是∠CAB的平分线,DM⊥AB,DN⊥AC,∴DM=DN,∵DE垂直平分线BC,∴DB=DC,在Rt△DMB和Rt△DNC中,∴Rt△DMB≌Rt△DNC(HL),∴BM=CN.【点睛】本题主要考查了角平分线的性质和线段垂直平分线的性质以及全等三角形的判定与性质,熟悉角平分线的性质和线段垂直平分线的性质是解决问题的关键.20、的面积是.【解析】

根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.【详解】解:∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,∴S△ABC=BC•AD=(BD+CD)•AD=×21×8=1,因此△ABC的面积为1.答:△ABC的面积是1.【点睛】此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证△ABD是直角三角形.21、(1)-;(2)【解析】

(1)根据三角形法则可知:延长即可解决问题;(2)连接BD.因为即可推出【详解】解:(1)∵=,=∴故答案为-.(2)连接BD.∵∴∴即为所求;【点睛】本题考查作图﹣复杂作图、平行四边形的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22、(1)四边形AEDF是菱形,证明见解析;(2)24;(3)当△ABC中∠BAC=90°时,四边形AEDF是正方形;【解析】

(1)由∠BAD=∠CAD,AO=AO,∠AOE=∠AOF=90°证△AEO≌△AFO,推出EO=FO,得出平行四边形AEDF,根据EF⊥AD得出菱形AEDF;(2)由(1)知菱形AEDF对角线互相垂直平分,故AO=AD=4,根据勾股定理得EO=3,从而得到EF=6;(3)根据有一个角是直角的菱形是正方形可得∠BAC=90°时,四边形AEDF是正方形.【详解】(1)四边形AEDF是菱形,∵AD平分∠BAC,∴∠1=∠2,又∵EF⊥AD,∴∠AOE=∠AOF=90°∵在△AEO和△AFO中∵,∴△AEO≌△AFO(ASA),∴EO=FO,∵EF垂直平分AD,∴EF、AD相互平分,∴四边形AEDF是平行四边形又EF⊥AD,∴平行四边形AEDF为菱形;(2)∵EF垂直平分AD,AD=8,∴∠AOE=90°,AO=4,在RT△AOE中,∵AE=5,∴EO==3,由(1)知,EF=2EO=6;(3)当△ABC中∠BAC=90°时,四边形AEDF是正方形;∵∠BAC=90°,∴四边形AEDF是正方形(有一个角是直角的菱形是正方形).【点睛】本题考查了菱形的判定和正方形的判定,解题的关键是掌握邻边相等的平行四边形是菱形,有一个角是直角的菱形是正方形.23、(1);(2)见解析【解析】

(1)利用等腰直角三角形的性质及勾股定理求AB和AE的长,然后根据矩形的性质求得CD和ED的长,从而利用勾股定理求解;(2)延长交的延长线于,利用AAS定理证得,得到,,然后求得,从而使问题得解.【详解】解:(1)∵矩形,∴又∵∴设,在中,即解得:,(舍)∴∵矩形∴,∴在中,,∴;(2)如答图,延长交的延长线于∵,∴又∵为的中点,∴在和中∴∴,∵,∴∴∴∴【点睛】本题考查矩形的性质,勾股定理解直角三角形,全等三角形的判定和性质,等腰三角形的判定和性质,有一定的综合性,掌握相关性质定理正确推理论证是解题关键.24、【解析】

由x+y=−5,xy=3,得出x<0,y<0,利用二次根式的性质化简,整体代入求得答案即可.【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴===.【点睛】此题考查二次根式的化简求值,掌握二次根式的性质,渗透整体代入的思想是解决问题的关键.25、见解析【解析】

根据平行四边形的性质得出AB=CD,AB∥CD,求出△BAE≌△DCF,求出BE=DF,根据平行四边形的判定得出即可.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论