2023年山东省烟台市、龙口市八年级数学第二学期期末复习检测模拟试题含解析_第1页
2023年山东省烟台市、龙口市八年级数学第二学期期末复习检测模拟试题含解析_第2页
2023年山东省烟台市、龙口市八年级数学第二学期期末复习检测模拟试题含解析_第3页
2023年山东省烟台市、龙口市八年级数学第二学期期末复习检测模拟试题含解析_第4页
2023年山东省烟台市、龙口市八年级数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在▱ABCD中,∠A+∠C=140°,则∠B的度数为(A.140° B.120° C.1102.已知一次函数不过第二象限,则b试问取值范围是()A.b<0 B.b>0 C.b≤0 D.b≥03.如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的和最小值为()A. B.4 C.3 D.4.要得到函数y2x3的图象,只需将函数y2x的图象()A.向左平移3个单位 B.向右平移3个单位C.向下平移3个单位 D.向上平移3个单位5.点A(3,y1)和点B(﹣2,y2)都在直线y=﹣2x+3上,则y1和y2的大小关系是()A.y1>y2 B.y1<y2 C.y1=y2 D.不能确定6.如图,直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A.(-4,0) B.(-1,0) C.(-2,0) D.(-3,0)7.下列等式正确的是()A. B. C. D.8.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1) D.x2+y2=(x﹣y)2+2x9.已知点,,,在直线上,且,下列选项正确的是A. B. C. D.无法确定10.如图,在▱ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为()A.3 B. C. D.4二、填空题(每小题3分,共24分)11.在平面直角坐标系中,直线l:与x轴交于点,如图所示依次作正方形、正方形、…、正方形,使得点…在直线l上,点…在y轴正半轴上,则点的横坐标是__________________。12.关于的一元二次方程有实数根,则的取值范围是_____________.13.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:.“解密世园会”、.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择条线路游览,每条线路被选择的可能性相同.李欣和张帆恰好选择同线路游览的概率为_______.14.若不等式组无解,则a的取值范围是___.15.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=24,BD=10,DE⊥BC,垂足为点E,则DE=_______.16.计算__.17.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为________.18.写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式).三、解答题(共66分)19.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗;为什么;(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.①若AE=6,DE=10,求AB的长;②若AB=BC=9,BE=3,求DE的长.20.(6分)解方程:(1);(2).21.(6分)如图,E、F是平行四边形ABCD的对角线AC上的点,且CE=AF.求证:BE∥DF.22.(8分)由于受到手机更新换代的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?23.(8分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有A、B两种型号的设备可供选购,A、B两种型号的设备每台的价格分别为12万元和10万元(1)该公司经预算决定购买节省能源的新设备的资金不超过110万元,则A型设备最多购买多少台?(2)已知A型设备的产量为240吨/月,B型设备的产量为180吨/月,若每月要求总产量不低于2040吨,则A型设备至少要购买多少台?24.(8分)阅读可以增进人们的知识也能陶治人们的情操。我们要多阅读,多阅读有营养的书。因此我校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A、B、C、D、E五组进行整理,整理后的数据如下表(表中信息不完整)。图1和图2是根据整理后的数据绘制的两幅不完整的统计图.阅读时间分组统计表组别阅读时间x(h)人数AaB100CbD140Ec请结合以上信息解答下列问题(1)求a,b,c的值;(2)补全图1所对应的统计图;(3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.25.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.26.(10分)如图,一次函数的图象与,轴分别交于,两点,点与点关于轴对称.动点,分别在线段,上(点与点,不重合),且满足.(1)求点,的坐标及线段的长度;(2)当点在什么位置时,,说明理由;(3)当为等腰三角形时,求点的坐标.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.【详解】∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°,故选:C.【点睛】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.2、C【解析】

根据题意可知:图象经过一三象限或一三四象限,可得b=1或b<1,再解不等式可得答案.【详解】解:一次函数的图象不经过第二象限,则可能是经过一三象限或一三四象限,若经过一三象限时,b=1;若经过一三四象限时,b<1.故b≤1,故选C.【点睛】此题主要考查了一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限;k<1时,直线必经过二、四象限;b>1时,直线与y轴正半轴相交;b=1时,直线过原点;b<1时,直线与y轴负半轴相交.3、B【解析】

由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为16,可求出AB的长,从而得出结果.【详解】解:设BE与AC交于点P',连接BD.∵点B与D关于AC对称,∴P'D=P'B,∴P'D+P'E=P'B+P'E=BE最小.∵正方形ABCD的面积为16,∴AB=1,又∵△ABE是等边三角形,∴BE=AB=1.故选:B.【点睛】本题考查的是正方形的性质和轴对称-最短路线问题,熟知“两点之间,线段最短”是解答此题的关键.4、D【解析】

平移后相当于x不变y增加了3个单位,由此可得出答案.【详解】解:由题意得x值不变y增加3个单位

应向上平移3个单位.

故选:D.【点睛】本题考查一次函数图象的几何变换,注意平移k值不变的性质.5、B【解析】试题分析:先根据一次函数的解析式判断出函数的增减性,再比较出3与﹣1的大小,根据函数的增减性进行解答即可.解:∵直线y=﹣1x+3中,k=﹣1<0,∴此函数中y随x的增大而减小,∵3>﹣1,∴y1<y1.故选B.考点:一次函数图象上点的坐标特征.6、C【解析】

根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标并根据三角形中位线定理得出CD//x轴,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【详解】解:连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示在中,当y=0时,,解得x=-8,A点坐标为,当x=0时,,B点坐标为,∵点C、D分别为线段AB、OB的中点,∴点C(-4,3),点D(0,3),CD∥x轴,∵点D′和点D关于x轴对称,

∴点D′的坐标为(0,-3),点O为线段DD′的中点.

又∵OP∥CD,

∴OP为△CD′D的中位线,点P为线段CD′的中点,∴点P的坐标为,故选:C.【点睛】本题考查轴对称——最短路径问题,一次函数图象与坐标轴交点问题,三角形中位线定理.能根据轴对称的性质定理找出PC+PD值最小时点P的位置是解题的关键.7、B【解析】

根据平方根、算术平方根的求法,对二次根式进行化简即可.【详解】A.=2,此选项错误;B.=2,此选项正确;C.=﹣2,此选项错误;D.=2,此选项错误;故选:B.【点睛】本题考查了二次根式的化简和求值,是基础知识比较简单.8、C【解析】

根据因式分解是将一个多项式转化为几个整式的乘积的形式,根据定义,逐项分析即可.【详解】A、2a2-2a+1=2a(a-1)+1,等号的右边不是整式的积的形式,故此选项不符合题意;B、(x+y)(x-y)=x2-y2,这是整式的乘法,故此选项不符合题意;C、x2-6x+5=(x-5)(x-1),是因式分解,故此选项符合题意;D、x2+y2=(x-y)2+2xy,等号的右边不是整式的积的形式,故此选项不符合题意;故选C.【点睛】此题考查因式分解的意义,解题的关键是看是否是由一个多项式化为几个整式的乘积的形式.9、B【解析】

先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可作出判断.【详解】解:直线中,随的增大而增大,,.故选:.【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.10、D【解析】

由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【详解】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE==4,故选D.【点睛】本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.二、填空题(每小题3分,共24分)11、【解析】

根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得所求点Bn是线段CnAn+1的中点,由此即可得出点Bn的坐标.【详解】∵观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,

∴An(2n-1,2n-1-1)(n为正整数).

观察图形可知:点Bn是线段CnAn+1的中点,

∴点Bn的坐标是(2n-1,2n-1).

故答案为.【点睛】此题考查一次函数图象上点的坐标特征以及规律型中点的坐标的变化,根据点的坐标的变化找出变化规律“An(2n-1,2n-1-1)(n为正整数)”是解题的关键.12、且【解析】

根据∆≥0,且k≠0列式求解即可.【详解】由题意得∆=16+8k≥0且k≠0,解之得且.故答案为:且.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.13、【解析】

画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.【详解】画树状图分析如下:共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,∴李欣和张帆恰好选择同一线路游览的概率为.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14、a<1.【解析】

解出不等式组含a的解集,与已知不等式组无解比较,可求出a的取值范围.【详解】解不等式3x﹣2≥,得:x≥1,解不等式x﹣a≤0,得:x≤a,∵不等式组无解,∴a<1,故答案为a<1.【点睛】此题考查解一元一次不等式组,解题关键在于掌握运算法则15、【解析】

试题分析:根据菱形性质得出AC⊥BD,AO=OC=12,BO=BD=5,根据勾股定理求出AB,根据菱形的面积得出S菱形ABCD=×AC×BD=AB×DE,代入求出即可.【详解】∵四边形ABCD是菱形,AC=24,BD=10,∴AC⊥BD,AO=OC=AC=12,BO=BD=5,在Rt△AOB中,由勾股定理得:AB=13,∵S菱形ABCD=×AC×BD=AB×DE,∴×24×10=13DE,∴DE=,故答案为.【点睛】本题考查的是菱形的性质及等面积法,掌握菱形的性质,灵活运用等面积法是解题的关键.16、【解析】

通过原式约分即可得到结果.【详解】解:原式=,故答案为:.【点睛】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.17、1【解析】

由平行四边形的性质得出BC=AD=6,由直角三角形斜边上的中线性质即可得出结果.【详解】∵四边形ABCD是平行四边形,∴BC=AD=6,∵E为BC的中点,AC⊥AB,∴AE=12BC=1故答案为:1.【点睛】本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.18、y=2x【解析】试题分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.三、解答题(共66分)19、(1)证明见解析;(2)成立;(3)①12;②7.1【解析】

(1)先判断出∠B=∠CDF,进而判断出△CBE≌△CDE,即可得出结论;(2)先判断出∠BCE=∠DCF,进而判断出∠ECF=∠BCD=90°,即可得出∠GCF=∠GCE=41°,得出△ECG≌△FCG即可得出结论;(3)先判断出矩形ABCH为正方形,进而得出AH=BC=AB,①根据勾股定理得,AD=8,由(1)(2)知,ED=BE+DH,设BE=x,进而表示出DH=10-x,用AH=AB建立方程即可得出结论;②由(1)(2)知,ED=BE+DH,设DE=a,进而表示出DH=a-3,AD=12-a,AE=6,根据勾股定理建立方程求解即可得出结论.【详解】解:(1)在正方形ABCD中,∵BC=CD,∠B=∠ADC,∴∠B=∠CDF,∵BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)成立,由(1)知,△CBF≌△CDE,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,∴∠ECF=∠BCD=90°,∵∠GCE=41°,∴∠GCF=∠GCE=41°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)如图2,过点C作CH⊥AD交AD的延长线于H,∵AD∥BC,∠B=90°,∴∠A=90°,∵∠CHA=90°,∴四边形ABCH为矩形,∵AB=BC,∴矩形ABCH为正方形,∴AH=BC=AB,①∵AE=6,DE=10,根据勾股定理得,AD=8,∵∠DCE=41°,由(1)(2)知,ED=BE+DH,设BE=x,∴10+x=DH,∴DH=10-x,∵AH=AB,∴8+10-x=x+6,∴x=6,∴AB=12;②∵∠DCE=41°,由(1)(2)知,ED=BE+DH,设DE=a,∴a=3+DH,∴DH=a-3,∵AB=AH=9,∴AD=9-(a-3)=12-a,AE=AB-BE=6,根据勾股定理得,DE2=AD2+AE2,即:(12-a)2+62=a2,∴a=7.1,∴DE=7.1.【点睛】本题是四边形综合题,考查了矩形的判定,正方形的判定和性质,勾股定理,全等三角形的判定和性质,判断出△ECG≌△FCG是解本题的关键.20、(1),;(2),【解析】

(1)运用因式分解法求解即可;(2)运用公式法求解即可.【详解】(1),(2)∵a=2,b=3,c=-1∴Δ=9-4×2×(-1)=17>0,【点睛】此题考查解一元二次方程,熟练掌握各种解法适用的题型,选择合适的方法解题是关键.21、证明见解析.【解析】

由AF=CE可得AE=CF,再结合平行四边形的性质证明△ABE≌△CDF,从而得出∠BEA=∠CFD,由此可得∠BEF=∠DFE,进而可证明BE∥DF.【详解】证明:∵AF=CE,∴AF﹣EF=CE﹣EF.∴AE=CF.∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAE=∠DCF.在△ABE和△CDF中∵,∴△ABE≌△CDF(SAS).∴∠BEA=∠CFD,∴∠BEF=∠DFE,∴BE∥DF.【点睛】此题主要考查了全等三角形的性质与判定、平行四边形的性质,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题.22、(1)今年甲型号手机每台售价为1元;(2)共有5种进货方案.【解析】分析:(1)先设今年甲型号手机每台售价为x元,根据题意列出方程,解出x的值,再进行检验,即可得出答案;(2)先设购进甲型号手机m台,根据题意列出不等式组,求出m的取值范围,即可得出进货方案.详解:(1)设今年甲型号手机每台售价为x元,由题意得,解得x=1.经检验x=1是方程的解.故今年甲型号手机每台售价为1元.(2)设购进甲型号手机m台,由题意得,17600≤1000m+800(20-m)≤18400,解得8≤m≤2.因为m只能取整数,所以m取8、9、10、11、2,共有5种进货方案.点睛:此题考查了一元一次不等式组的应用,要能根据题意列出不等式组,关键是根据不等式组的解集求出所有的进货方案,注意解分式方程要检验,是一道实际问题.23、(1)A型设备最多购买5台;(2)A型设备至少要购买4台.【解析】

(1)设购买A型号的x台,购买B型号的为(10-x)台,根据购买节省能源的新设备的资金不超过110万元.可列出不等式求解.(2)设购买A型号的a台,购买B型号的为(10-a)台,根据每月要求总产量不低于2040吨,可列不等式求解.【详解】(1)设购买A型号的x台,购买B型号的为(10﹣x)台,则:12x+10(10﹣x)≤110,解得:x≤5,答:A型设备最多购买5台;(2)设购买A型号的a台,购买B型号的为(10﹣a)台,可得:240a+180(10﹣a)≥2040,解得:a≥4,∴A型设备至少要购买4台.【点睛】本题考查了一元一次不等式的应用,解题的关键是根据题意列出的一元一次不等式.24、(1)a=20,b=200,c=40;(2)详见解析;(3)估计全校课外阅读时间在20h以下的学生所占百分比为24%.【解析】

(1)根据D组的人数及占比可求出调查的总人数,再根据C,E组的占比求出对应的人数,再用总人数减去各组人数即可求出.(2)根据所求的数值即可补全统计图;(3)根据题意可知在20h以下(不含20h)的学生所占百分比为,故可求解.【详解】解:(1)由题意可知,调查的总人数为,∴,,则;(2)补全图形如下:(3)由(1)可知,答:估计全校课外阅读时间在20h以下的学生所占百分比为24%.【点睛】此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.25、(1)BD=CD.理由见解析;(2)AB=AC时,四边形AFBD是矩形.理由见解析【解析】

(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论