版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知一组数据2、x、7、3、5、3、2的众数是2,则这组数据的中位数是()A.2 B.2.5 C.3 D.52.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.3.已知关于x的一元二次方程2x2﹣mx﹣4=0的一个根为m,则m的值是()A.2 B.﹣2 C.2或﹣2 D.任意实数4.x≥3是下列哪个二次根式有意义的条件()A. B. C. D.5.定义:在同一平面内画两条相交、有公共原点的数轴x轴和y轴,交角a≠90°,这样就在平面上建立了一个斜角坐标系,其中w叫做坐标角,对于坐标平面内任意一点P,过P作y轴和x轴的平行线,与x轴、y轴相交的点的坐标分别是a和b,则称点P的斜角坐标为(a,b).如图,w=60°,点P的斜角坐标是(1,2),过点P作x轴和y轴的垂线,垂足分别为M、N,则四边形OMPN的面积是(
)A.1336 B.13386.如图,在菱形中,,,是边的中点,分别是上的动点,连接,则的最小值是()A.6 B. C. D.7.如图所示是根据某班级名同学一周的体育锻炼情况绘制的统计图,由图像可知该班同学一周参加体育锻炼时间的中位数,众数分别是()A.,B.,C.,D.,8.小明在画函数(>0)的图象时,首先进行列表,下表是小明所列的表格,由于不认真列错了一个不在该函数图象上的点,这个点是A. B. C. D.9.下列关于反比例函数的说法中,错误的是()A.图象经过点 B.当时,C.两支图象分别在第二、四象限 D.两支图象关于原点对称10.如图,E,F分别是正方形ABCD边AD、BC上的两定点,M是线段EF上的一点,过M的直线与正方形ABCD的边交于点P和点H,且PH=EF,则满足条件的直线PH最多有(
)条A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,E是AD的中点,且若矩形ABCD的周长为48cm,则矩形ABCD的面积为______.12.若关于y的一元二次方程y2﹣4y+k+3=﹣2y+4有实根,则k的取值范围是_____.13.已知x+y=6,xy=3,则x2y+xy2的值为_____.14.关于的方程是一元二次方程,那么的取值范围是_______.15.如图.△ABC中,AC的垂直平分线分别交AC、AB于点D.F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是_____16.如图,C为线段AB上的一点,△ACM、△CBN都是等边三角形,若AC=3,BC=2,则△MCD与△BND的面积比为.17.如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20+2,那么△DEF的周长是_____.18.如图,在中,,,的周长是10,于,于,且点是的中点,则的长是______.三、解答题(共66分)19.(10分)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.20.(6分)解不等式组:,并把解集表示在数轴上;21.(6分)如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.22.(8分)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.23.(8分)一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量保持不变,容器内水量(单位:)与时间(单位:)的部分函数图象如图所示,请结合图象信息解答下列问题:(1)求出水管的出水速度;(2)求时容器内的水量;(3)从关闭进水管起多少分钟时,该容器内的水恰好放完?24.(8分)某学校八年级七班学生要去实验基地进行实践活动,估计乘车人数为10人到40人之间,现在欲租甲、乙两家旅行社的车辆,已知甲、乙两家旅行社的服务质量相同,且报价都是每人120元,经过协商,甲旅行社表示可给予每位学生七五折优惠;乙旅行社表示可先免去一位同学的车费,然后给予其他同学八折优惠.(1)若用x表示乘车人数,请用x表示选择甲、乙旅行社的费用y甲与y乙;(2)请你帮助学校选择哪一家旅行社费用合算?25.(10分)如图,在中,,过点的直线,为边上一点,过点作,交直线于,垂足为,连接,.(1)求证:;(2)当为中点时,四边形是什么特殊四边形?说明你的理由;(3)当为中点时,则当的大小满足什么条件时,四边形是正方形?请直接写出结论.26.(10分)(2010•清远)正比例函数y=kx和一次函数y=ax+b的图象都经过点A(1,2),且一次函数的图象交x轴于点B(4,0).求正比例函数和一次函数的表达式.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据众数定义首先求出x的值,再根据中位数的求法,求出中位数.【详解】解:数据2,x,7,3,5,3,2的众数是2,说明2出现的次数最多,x是未知数时2,3,均出现两次,.x=2.这组数据从小到大排列:2,2,2,3,3,5,7.处于中间位置的数是3,因而的中位数是3.故选:C.【点睛】本题考查的是平均数、众数和中位数.要注意,当所给数据有单位时,所求得的平均数、众数和中位数与原数据的单位相同,不要漏单位.2、C【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,又是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、C【解析】
根据一元二次方程的解的定义把代入方程得到关于m的方程,然后解关于m的方程即可.【详解】把x=m代入方程2x2﹣mx﹣4=0得2m2﹣m2﹣4=0,解得m=2或m=﹣2,故选C.【点睛】本题考查了一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.4、D【解析】
根据二次根式有意义的条件逐项求解即可得答案.【详解】A、x+3≥1,解得:x≥-3,故此选项错误;B、x-3>1,解得:x>3,故此选项错误;C、x+3>1,解得:x>-3,故此选项错误;D、x-3≥1,解得:x≥3,故此选项正确,故选D.【点睛】本题考查了二次根式和分式有意义的条件,二次根式的被开方数是非负数.分式的分母不能等于1.5、B【解析】
添加辅助线,将四边形OMPN转化为直角三角形和平行四边形,因此过点P作PA∥y轴,交x轴于点A,过点P作PB∥x轴交y轴于点B,易证四边形OAPB是平行四边形,利用平行四边形的性质,可知OB=PA,OA=PB,由点P的斜角坐标就可求出PB、PA的长,再利用解直角三角形分别求出PN,NB,PM,AM的长,然后根据S四边形OMPN=S△PAM+S△PBN+S平行四边形OAPB,利用三角形的面积公式和平行四边形的面积公式,就可求出结果.【详解】解:过点P作PA∥y轴,交x轴于点A,过点P作PB∥x轴交y轴于点B,∴四边形OAPB是平行四边形,∠NBP=w=∠PAM=60°,
∴OB=PA,OA=PB∵点P的斜角坐标为(1,2),∴OA=1,OB=2,∴PB=1,PA=2,∵PM⊥x轴,PN⊥y轴,∴∠PMA=∠PNB=90°,在Rt△PAM中,∠PAM=60°,则∠APM=30°,∴PA=2AM=2,即AM=1PM=PAsin60°∴PM=3∴S△PAM=1在Rt△PBN中,∠PBN=60°,则∠BPN=30°,∴PB=2BN=1,即BN=1PN=PBsin60°∴PN=3∴S△PBN=12PN⋅BN=∵S四边形OMPN=S△PAM+S△PBN+S平行四边形OAPB=故答案为:B【点睛】本题考查了新概念斜角坐标系、图形与坐标、含30°角直角三角形的性质、三角函数、平行四边形的判定与性质、三角形面积与平行四边形面积的计算等知识,熟练掌握新概念斜角坐标系与含30°角直角三角形的性质是解题的关键.6、D【解析】
作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,点P、M即为使PE+PM取得最小值的点,由PE+PM=PE′+PM=E′M利用S菱形ABCD=AC•BD=AB•E′M求解可得答案.【详解】解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则此时点P、M使PE+PM取得最小值的,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵,BD=6,∴AB=,由S菱形ABCD=AC•BD=AB•E′M得××6=•E′M,解得:E′M=,即PE+PM的最小值是,故选:D.【点睛】本题主要考查菱形的性质和轴对称−最短路线问题,解题的关键是掌握利用轴对称的性质求最短路线的方法.7、B【解析】
根据中位数、众数的概念分别求解即可.【详解】将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;
众数是一组数据中出现次数最多的数,即8;
故选:B【点睛】考查了中位数、众数的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.8、D【解析】
首先将各选项代入计算看是否在直线上即可.【详解】A选项,当代入故在直线上.B选项,当代入故在直线上.C选项,当代入故在直线上.D选项,当代入故不在直线上.故选D.【点睛】本题主要考查直线上的点满足直线方程,是考试的基本知识,应当熟练掌握.9、C【解析】
根据反比例函数的性质和图像的特征进行判断即可.【详解】解:A、因为,所以xy=2,(-1)×(-2)=2,故本选项不符合题意;B、当x=2时,y=1,该双曲线经过第一、三象限,在每个象限内,y随着x的增大而减小,所以当x时,0<y<1,故本选项不符合题意;C、因为k=2>0,该双曲线经过第一、三象限,故本选项错误,符合题意;D、反比例函数的两支双曲线关于原点对称,故本选项不符合题意.故选C【点睛】本题考查了反比例函数的性质.对于反比例函数,当k>0时,双曲线位于第一、三象限,且在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,双曲线位于第二、四象限,在每一个象限内,函数值y随自变量x增大而增大.10、C【解析】
如图1,过点B作BG∥EF,过点C作CN∥PH,利用正方形的性质,可证得AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,再证明BG=CN,利用HL证明Rt△ABG≌Rt△CBN,根据全等三角形的对应角相等,可知∠ABG=∠BCN,然后证明PH⊥EF即可,因此过点M作EF的垂线满足的有一条直线;图2中还有2条,即可得出答案.【详解】解:如图1,过点B作BG∥EF,过点C作CN∥PH,∵正方形ABCD,∴AB∥CD,AD∥BC,∠A=∠NBC=90°,AB=BC,∴四边形BGEF,四边形PNCH是平行四边形,
EF=BG,PH=CN,∵PH=EF,∴BG=CN,在Rt△ABG和Rt△CBN中,BG=CN∴Rt△ABG≌Rt△CBN(HL)∴∠ABG=∠BCN,∵∠ABG+∠GBC=90°∴∠BCN+∠GBC=90°,∴BG⊥CN,∴PH⊥EF,∴过点M作EF的垂线满足的有一条直线;如图2图2中有两条P1H1,P2H2,所以满足条件的直线PH最多有3条,故答案为:C【点睛】本题考查了正方形的性质、等腰三角形的性质、全等三角形的判定与性质、熟练掌握正方形的性质是关键.二、填空题(每小题3分,共24分)11、128【解析】
根据AB=DC,∠A=∠D,AE=DE,利用SAS可判定△ABE≌△DCE,根据全等三角形的性质可得:∠AEB=∠DEC,再根据BE⊥CE,可得:∠BEC=90°,进而可得:∠AEB=∠DEC=45°,因此∠EBC=∠ECD=45°,继而可得:AB=AE,DC=DE,即AD=2AB,根据周长=48,可求得:BC=16,AB=8,最后根据矩形面积公式计算可得:S=16×8=128cm².【详解】∵AB=DC,∠A=∠D,AE=DE,∴△ABE≌△DCE(SAS),∴∠AEB=∠DEC,∵BE⊥CE,
∴∠BEC=90°,
∵∠AEB+∠BEC+∠DEC=180°,∴∠AEB=∠DEC=45°,∴∠EBC=∠ECD=45°,∴AB=AE,DC=DE,即AD=2AB,又∵周长=48,∴BC=16,AB=8,S=16×8=128cm²,故答案为:128.【点睛】本题主要考查矩形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,解决本题的关键是要熟练掌握矩形性质,全等三角形,等腰直角三角形的判定和性质.12、【解析】
首先把方程化为一般形式,再根据方程有实根可得△=,再代入a、b、c的值再解不等式即可.【详解】解:y2﹣4y+k+3=﹣2y+4,化为一般式得:,再根据方程有实根可得:△=,则,解得:;∴则k的取值范围是:.故答案为:.【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.13、1【解析】
先提取公因式xy,整理后把已知条件直接代入计算即可.【详解】∵x+y=6,xy=3,
∴x2y+xy2=xy(x+y)=3×6=1.
故答案为1.【点睛】本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键.14、【解析】
根据一元二次方程的概念及一般形式:即可求出答案.【详解】解:∵关于的方程是一元二次方程,∴二次项系数,解得;故答案为.【点睛】本题考查一元二次方程的概念,比较简单,做题时熟记二次项系数不能等于0即可.15、2【解析】
由AF=BF得到F为AB的中点,又DF垂直平分AC,得到D为AC的中点,可得出DF为三角形ABC的中位线,根据三角形中位线定理得到DF平行于CB,且DF等于BC的一半,由BC的长求出DF的长,由两直线平行同旁内角互补得到∠C=90°,同时由DE与EB垂直,ED与DC垂直,根据垂直的定义得到两个角都为直角,利用三个角为直角的四边形为矩形得到四边形BCDE为矩形,在直角三角形ADF中,利用锐角三角函数定义及特殊角的三角函数值,由∠A=30°,DF的长,求出AD的长,即为DC的长,由矩形的长BC于宽CD的乘积即可求出矩形BCED的面积.【详解】∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,∴DF为三角形ABC的中位线,∴DE∥BC,DF=BC,又∠ADF=90°,∴∠C=∠ADF=90°,又BE⊥DE,DE⊥AC,∴∠CDE=∠E=90°,∴四边形BCDE为矩形,∵BC=2,∴DF=BC=1,在Rt△ADF中,∠A=30°,DF=1,∴tan30°=,即AD=,∴CD=AD=,则矩形BCDE的面积S=CD⋅BC=2.故答案为2【点睛】此题考查矩形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,含30度角的直角三角形,解题关键在于求出四边形BCDE为矩形16、.【解析】试题分析:利用△ACM、△CBN都是等边三角形,则也是相似三角形,相似比是3:2,再证得△MCD∽△BND,应用相似三角形的面积比等于相似比的平方得△MCD与△BND的面积比为.故答案为:.考点:相似三角形的判定与性质;等边三角形的性质.17、10+【解析】
根据三角形中位线定理得到,,,根据三角形的周长公式计算即可.【详解】解:∵△ABC的周长为,∴AB+AC+BC=,∵点D、E、F分别是BC、AB、AC的中点,∴,,,∴△DEF的周长=DE+EF+DF=(AC+BC+AB)=10+,故答案为:10+.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18、【解析】
根据直角三角形斜边上的中线以及等腰三角形的性质即可求出答案.【详解】解:∵AB=AC,AF⊥BC,∴AF是△ABC的中线,∵D是AB的中点,∴DF是△ABC的中位线,设AB=BC=2x,∴DF=x,∵BE⊥AC,点D是AB的中点,点F是BC的中点,∴DE=AB=x,EF=BC=4,∵△DEF的周长为10,∴x+x+4=10,∴x=3,∴AC=6,∴由勾股定理可知:AF=故答案为:.【点睛】本题考查直角三角形斜边上的中线,解题的关键是熟练运用直角三角形斜边上的中线,等腰三角形的性质以及勾股定理,本题属于中等题型.三、解答题(共66分)19、甲车的速度是60千米/时,乙车的速度是90千米/时.【解析】
根据题意,设出甲、乙的速度,然后根据题目中两车相遇时时间相同,列出方程,解方程即可.【详解】设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,,解得,x=60,经检验,x=60是原方程的解.则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.20、【解析】
分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【详解】∵解不等式得:,解不等式得:,∴不等式组的解集是,
在数轴上表示不等式组的解集为:【点睛】本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集的应用,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21、(1)∠QEP=60°;(2)∠QEP=60°,证明详见解析;(3)【解析】
(1)如图1,先根据旋转的性质和等边三角形的性质得出∠PCA=∠QCB,进而可利用SAS证明△CQB≌△CPA,进而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的内角和定理即可求得∠QEP=∠QCP,从而完成猜想;(2)以∠DAC是锐角为例,如图2,仿(1)的证明思路利用SAS证明△ACP≌△BCQ,可得∠APC=∠Q,进一步即可证得结论;(3)仿(2)可证明△ACP≌△BCQ,于是AP=BQ,再求出AP的长即可,作CH⊥AD于H,如图3,易证∠APC=30°,△ACH为等腰直角三角形,由AC=4可求得CH、PH的长,于是AP可得,问题即得解决.【详解】解:(1)∠QEP=60°;证明:连接PQ,如图1,由题意得:PC=CQ,且∠PCQ=60°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠PCA=∠QCB,则在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因为△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案为60;(2)∠QEP=60°.以∠DAC是锐角为例.证明:如图2,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵线段CP绕点C顺时针旋转60°得到线段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠1=∠2,∴∠QEP=∠PCQ=60°;
(3)连结CQ,作CH⊥AD于H,如图3,与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH为等腰直角三角形,∴AH=CH=AC=×4=,在Rt△PHC中,PH=CH=,∴PA=PH−AH=-,∴BQ=−.【点睛】本题考查了等边三角形的性质、旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质和有关计算、30°角的直角三角形的性质等知识,涉及的知识点多、综合性强,灵活应用全等三角形的判定和性质、熟练掌握旋转的性质和相关图形的性质是解题的关键.22、(1)y=8x(0≤x<20)或y=6.4x+1(x≥20);(2)当购买数量x=35时,W总费用最低,W最低=16元.【解析】
(1)根据函数图象找出点的坐标,结合点的坐标利用待定系数法求出函数解析式即可;(2)根据B种苗的数量不超过35棵,但不少于A种苗的数量可得出关于x的一元一次不等式组,解不等式组求出x的取值范围,再根据“所需费用为W=A种树苗的费用+B种树苗的费用”可得出W关于x的函数关系式,根据一次函数的性质即可解决最值问题.【详解】(1)当0≤x<20时,设y与x的函数关系式为:y=mx,把(20,160)代入y=mx,得160=mx,解得m=8,故当0≤x<20时,y与x的函数关系式为:y=8x;当x≥20时,设y与x的函数关系式为:y=kx+b,把(20,160),(40,288)代入y=kx+b得:解得:∴y=6.4x+1.∴y与x的函数关系式为y=8x(0≤x<20)或y=6.4x+1(x≥20);(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴,∴22.5≤x≤35,设总费用为W元,则W=6.4x+1+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=16(元).【点睛】本题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次不等式组,解决该题型题目时,根据函数图象找出点的坐标,再利用待定系数法求出函数解析式是关键.23、(1);(2);(3)【解析】
(1)设出水管的出水速度为,根据10分钟内的进水量-10分钟内的出水量=20升列方程求解即可;(2)设当时,与的函数解析式为,用待定系数法求出函数解析式,再令x=8计算即可;(3)用容器的储水量30升除以(1)中求出的出水速度即可.【详解】解:(1)设出水管的出水速度为.,解得.答:出水管的出水速度为.(2)设当时,与的函数解析式为.将点,代入,得,解得.∴.∴当时,.答:时容器内的水量为.(3).答:从关闭进水管起时,该容器内的水恰好放完.【点睛】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.24、(1)y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 感恩节活动总结 15篇
- 感恩老师的发言稿集合15篇
- 律师执业年度工作总结
- 供电工程施工方案(技术标)
- 年会代表团队发言稿范文(10篇)
- 湖南省株洲市高三教学质量统一检测(一) 语文试题(含答案)
- 2025版汽车零部件销售订购合同(年度版)
- 二零二五版淘宝年度合作运营效果跟踪协议3篇
- 精细化人力资源管理的月度工作计划
- 金属非金属公司话务员工作总结
- 励志课件-如何做好本职工作
- 2024年山东省济南市中考英语试题卷(含答案解析)
- 2024年社区警务规范考试题库
- 2024年食用牛脂项目可行性研究报告
- 静脉治疗护理技术操作标准(2023版)解读 2
- 2024年全国各地中考试题分类汇编(一):现代文阅读含答案
- 2024-2030年中国户外音箱行业市场发展趋势与前景展望战略分析报告
- GB/T 30306-2024家用和类似用途饮用水处理滤芯
- 家务分工与责任保证书
- 武强县华浩数控设备科技有限公司年产9000把(只)提琴、吉他、萨克斯等乐器及80台(套)数控雕刻设备项目环评报告
- 安全生产法律法规汇编(2024年4月)
评论
0/150
提交评论