福建省南平市邵武市四中学片区2022-2023学年数学八下期末统考模拟试题含解析_第1页
福建省南平市邵武市四中学片区2022-2023学年数学八下期末统考模拟试题含解析_第2页
福建省南平市邵武市四中学片区2022-2023学年数学八下期末统考模拟试题含解析_第3页
福建省南平市邵武市四中学片区2022-2023学年数学八下期末统考模拟试题含解析_第4页
福建省南平市邵武市四中学片区2022-2023学年数学八下期末统考模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,△ABC是等边三角形,P是三角形内一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为18,则PD+PE+PF=()A.18 B.93C.6 D.条件不够,不能确定2.下列调查中,适合普查的事件是()A.调查华为手机的使用寿命vB.调查市九年级学生的心理健康情况C.调查你班学生打网络游戏的情况D.调查中央电视台《中国舆论场》的节目收视率3.如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过点B作于点G,延长BG交AD于点H.在下列结论中:①;②;③.其中不正确的结论有()A.0个 B.1个 C.2个 D.3个4.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB′交CD于点E,若AB=3,则△AEC的面积为()A.3 B.1.5 C.2 D.5.某企业今年一月工业产值达20亿元,前三个月总产值达90亿元,求第二、三月份工业产值的月平均增长率.设月平均增长率为,则由题意可得方程()A. B.C. D.6.如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为()A.9 B.10 C.12 D.147.直线与直线在同一平面直角坐标系中的图象如图所示,则关于的不等式的解集为()A. B. C. D.8.某楼盘2016年房价为每平方米15600元,经过两年连续降价后,2018年房价为每平方米12400元。设该楼盘这两年房价每年平均降低率为x,根据题意可列方程为()A.15600(1-2x)=12400 B.2×15600(1-2x)=12400C.15600(1-x)2=12400 D.15600(1-x2)=124009.若一次函数不经过第三象限,则的取值范围为A. B.C. D.10.如图,在中,平分交于点,平分,,交于点,若,则()A.75 B.100 C.120 D.125二、填空题(每小题3分,共24分)11.甲、乙两支球队队员身高的平均数相等,且方差分别为,,则身高罗整齐的球队是________队.(填“甲”或“乙”)12.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于______.13.如图,已知EF是△ABC的中位线,DE⊥BC交AB于点D,CD与EF交于点G,若CD⊥AC,EF=8,EG=3,则AC的长为___________.14.如图,一同学在广场边的一水坑里看到一棵树,他目测出自己与树的距离约为20m,树的顶端在水中的倒影距自己约5m远,该同学的身高为1.7m,则树高约为_____m.15.如图,四边形ABCD是菱形,对角线AC=8cm,DB=6cm,DH⊥AB于点H,则DH的长为_____.16.已知一组数据3、x、4、5、6,若该组数据的众数是5,则x的值是_____.17.一次函数y=-3x+a的图像与两坐标轴所围成的三角形面积是6,则a的值为_________.18.如图,已知两正方形的面积分别是25和169,则字母B所代表的正方形的边长是__________。三、解答题(共66分)19.(10分)如图,在▱ABCD中,各内角的平分线分别相交于点E,F,G,H.(1)求证:△ABG≌△CDE;(2)猜一猜:四边形EFGH是什么样的特殊四边形?证明你的猜想;(3)若AB=6,BC=4,∠DAB=60°,求四边形EFGH的面积.20.(6分)解方程组:x21.(6分)如图,已知直线AB的函数解析式为,直线与x轴交于点A,与y轴交于点B.(1)求A、B两点的坐标;(2)若点P(m,n)为线段AB上的一个动点(与A、B不重合),过点P作PE⊥x轴于点E,PF⊥y轴于点F,连接EF;①若△PAO的面积为S,求S关于m的函数关系式,并写出m的取值范围;②是否存在点P,使EF的值最小?若存在,求出EF的最小值;若不存在,请说明理由.22.(8分)在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.23.(8分)如图,在中,,点、分别在边、上,且,,点在边上,且,联结.(1)求证:四边形是菱形;(2)如果,,求四边形的面积.24.(8分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限且OC=5,点B在x轴的正半轴上且OB=6,∠OAB=90°且OA=AB.

(1)求点A和点B的坐标;

(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA成边AB于点Q,交边OC或边CB于点R,设点P的横坐标为t,线段QR的长度为m,已知t=4时,直线l恰好过点C,当0<t<3时,求m关于t的函数关系式.25.(10分)如图,已知四边形和四边形为正方形,点在线段上,点在同一直线上,连接,并延长交于点.(1)求证:.(2)若,,求线段的长.(3)设,,当点H是线段GC的中点时,则与满足什么样的关系式.26.(10分)如图,直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,点E为线段AB中点,∠ABO的平分线BD与y轴相较于点D,点A、C关于点O对称.(1)求线段DE的长;(2)一个动点P从点D出发,沿适当的路径运动到直线BC上的点F,再沿射线CB方向移动2个单位到点G,最后从点G沿适当的路径运动到点E处,当P的运动路径最短时,求此时点G的坐标;(3)将△ADE绕点A顺时针方向旋转,旋转角度α(0<α≤180°),在旋转过程中DE所在的直线分别与直线BC、直线AC相交于点M、点N,是否存在某一时刻使△CMN为等腰三角形,若存在,请求出CM的长,若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【解析】

因为要求PD+PE+PF的值,而PD、PE、PF并不在同一直线上,构造平行四边形,把三条线段转化到一条直线上,求出等于AB,根据三角形的周长求出AB即可.【详解】延长EP交AB于点G,延长DP交AC与点H.∵PD∥AB,PE∥BC,PF∥AC,∴四边形AFPH、四边形PDBG均为平行四边形,∴PD=BG,PH=AF.又∵△ABC为等边三角形,∴△FGP和△HPE也是等边三角形,∴PE=PH=AF,PF=GF,∴PE+PD+PF=AF+BG+FG=AB=183故选C.【点睛】本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.2、C【解析】试题解析:A、调查华为手机的使用寿命适合抽样调查;B、调查市九年级学生的心理健康情况适合抽样调查;C、调查你班学生打网络游戏的情况适合普查;D、调查中央电视台《中国舆论场》的节目收视率适合抽样调查,故选C.3、B【解析】

先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.【详解】∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=BC,∵BE=BC,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,∴△ADE≌△CDE,∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,∴Rt△ABH≌Rt△DCF,∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,故选B.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.4、D【解析】

解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE.在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=×3=.根据勾股定理得:,解得:x=2,∴EC=2,则S△AEC=EC•AD=.故选D.5、C【解析】

设月平均增长率的百分数为x,根据某企业今年一月工业产值达20亿元,第一季度总产值达1亿元,可列方程求解.【详解】设月平均增长率的百分数为x,

20+20(1+x)+20(1+x)2=1.

故选:C.【点睛】此题考查一元二次方程的应用,解题关键看到是一季度的和做为等量关系列出方程.6、A【解析】

利用平行四边形的性质即可解决问题.【详解】∵四边形ABCD是平行四边形,∴AD=BC=3,OD=OB==2,OA=OC=4,∴△OBC的周长=3+2+4=9,故选:A.【点睛】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.7、C【解析】

由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b解集.【详解】两条直线的交点坐标为(-1,2),且当x>-1时,直线l2在直线l1的下方,故不等式k2x<k1x+b的解集为x>-1.

故选:C.【点睛】此题考查一次函数的图象,解一元一次不等式,解题关键在于掌握两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.8、C【解析】分析:首先根据题意可得2017年的房价=2016年的房价×(1+增长率),2018年的房价=2017年的房价×(1+增长率),由此可得方程.详解:解:设这两年平均房价年平均增长率为x,根据题意得:15600(1-x)2=12400,故选C.点睛:本题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.9、A【解析】

解:∵一次函数不经过第三象限,,解之得,.故选A.10、B【解析】

根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理求得CE1+CF1=EF1.【详解】∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE1+CF1=EF1=2.故选:B【点睛】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用.二、填空题(每小题3分,共24分)11、甲【解析】

根据方差的定义,方差越小数据越稳定.【详解】解:∵S甲2=0.18,S乙2=0.32,

∴S甲2<S乙2,

∴身高较整齐的球队是甲;

故答案为:甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.12、4【解析】

根据等边三角形的性质和含30°的直角三角形的性质解答即可.【详解】∵在△ABC中,∠B=∠C=60°,∴∠A=60°,∵DE⊥AB,∴∠AED=30°,∵AD=1,∴AE=2,∵BC=6,∴AC=BC=6,∴CE=AC−AE=6−2=4.故答案为4.【点睛】本题考查了等边三角形的性质,解题的关键是熟练的掌握等边三角形的性质.13、1【解析】

由三角形中位线定理得出AB=2EF=16,EF∥AB,AF=CF,CE=BE,证出GE是△BCD的中位线,得出BD=2EG=6,AD=AB-BD=10,由线段垂直平分线的性质得出CD=BD=6,再由勾股定理即可求出AC的长.【详解】∵EF是△ABC的中位线,∴AB=2EF=16,EF∥AB,AF=CF,CE=BE,∴G是CD的中点,∴GE是△BCD的中位线,∴BD=2EG=6,∴AD=AB-BD=10,∵DE⊥BC,CE=BE,∴CD=BD=6,∵CD⊥AC,∴∠ACD=90°,∴AC=;故答案为:1.【点睛】本题考查了三角形中位线定理、线段垂直平分线的性质、勾股定理等知识;熟练掌握三角形中位线定理,求出CD=BD是解题的关键.14、5.1.【解析】

因为入射光线和反射光线与镜面的夹角相等,所以构成两个相似三角形,根据相似三角形的性质解答即可.【详解】由题意可得:∠BCA=∠EDA=90°,∠BAC=∠EAD,故△ABC∽△AED,由相似三角形的性质,设树高x米,则,∴x=5.1m.故答案为:5.1.【点睛】本题考查的是相似三角形的应用,因为入射光线和反射光线与镜面的夹角相等,所以构成两个相似三角形.15、4.8cm.【解析】

根据菱形的性质可得AB=5cm,根据菱形的面积公式可得S菱形ABCD=AC•BD=AB•DH,即DH==4.8cm.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4cm,OB=OD=3cm,∴AB=5cm,∴S菱形ABCD=AC•BD=AB•DH,∴DH==4.8cm.【点睛】本题考查了菱形的边长问题,掌握菱形的性质、菱形的面积公式是解题的关键.16、1【解析】

根据众数的定义进行求解即可得答案.【详解】解:这组数据中的众数是1,即出现次数最多的数据为:1,故x=1,故答案为1.【点睛】本题考查了众数的知识,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.17、±6【解析】

先根据坐标轴上点的坐标特征得到直线与坐标轴的交点坐标,再根据三角形面积公式得,然后解关于a的绝对值方程即可.【详解】解:当y=0时,y=-3x+a=0,解得x=,则直线与x轴的交点坐标为(,0);当x=0时,y=-3x+a=a,则直线与y轴的交点坐标为(0,a);所以,解得:a=±6.故选答案为:±6.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.18、12【解析】

结合勾股定理和正方形的面积公式,得字母B所代表的正方形的面积等于其它两个正方形的面积差,又因为正方形的面积=a2开方即可求边长.【详解】字母B所代表的正方形的面积=169−25=144所以字母B所代表的正方形边长a=.故选12.【点睛】本题考查了勾股定理及学生知识迁移的能力.三、解答题(共66分)19、(1)证明见解析;(2)矩形;(3).【解析】试题分析:(1)根据角平分线的定义以及平行四边形的性质,即可得到AB=CD,∠BAG=∠DCE,∠ABG=∠CDE,进而判定△ABG≌△CDE;(2)根据角平分线的定义以及平行四边形的性质,即可得出∠AGB=90°,∠DEC=90°,∠AHD=90°=∠EHG,进而判定四边形EFGH是矩形;(3)根据含30°角的直角三角形的性质,得到BG,AG,BF,CF,进而得出EF和GF的长,可得四边形EFGH的面积.试题解析:解:(1)∵GA平分∠BAD,EC平分∠BCD,∴∠BAG=∠BAD,∠DCE=∠DCB,∵▱ABCD中,∠BAD=∠DCB,AB=CD,∴∠BAG=∠DCE,同理可得,∠ABG=∠CDE,在△ABG和△CDE中,∵∠BAG=∠DCE,AB=CD,∠ABG=∠CDE,∴△ABG≌△CDE(ASA);(2)四边形EFGH是矩形.证明:∵GA平分∠BAD,GB平分∠ABC,∴∠GAB=∠BAD,∠GBA=∠ABC,∵▱ABCD中,∠DAB+∠ABC=180°,∴∠GAB+∠GBA=(∠DAB+∠ABC)=90°,即∠AGB=90°,同理可得,∠DEC=90°,∠AHD=90°=∠EHG,∴四边形EFGH是矩形;(3)依题意得,∠BAG=∠BAD=30°,∵AB=6,∴BG=AB=3,AG==CE,∵BC=4,∠BCF=∠BCD=30°,∴BF=BC=2,CF=,∴EF=﹣=,GF=3﹣2=1,∴矩形EFGH的面积=EF×GF=.点睛:本题主要考查了平行四边形的性质,矩形的判定以及全等三角形的判定与性质的运用,解题时注意:有三个角是直角的四边形是矩形.在判定三角形全等时,关键是选择恰当的判定条件.20、y1=4x【解析】

先由①得x=4+y,将x=4+y代入②,得到关于y的一元二次方程,解出y的值,再将y的值代入x=4+y求出x的值即可.【详解】解:x由①得:x=4+y③,把③代入②得:(4+y)2-2y2=(4+y)y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:y1=4x故答案为:y1=4x【点睛】本题考查了解高次方程.21、(1)A(4,0),B(0,8);(2)S=﹣4m+16,(0<m<4);(3),理由见解析【解析】试题分析:(1)根据坐标轴上点的特点直接求值,

(2)①由点在直线AB上,找出m与n的关系,再用三角形的面积公式求解即可;

②判断出EF最小时,点P的位置,根据三角形的面积公式直接求解即可.试题解析:(1)令x=0,则y=8,∴B(0,8),令y=0,则﹣2x+8=0,∴x=4,∴A(4,0),(2)∵点P(m,n)为线段AB上的一个动点,∴﹣2m+8=n,∵A(4,0),∴OA=4,∴0<m<4∴S△PAO=OA×PE=×4×n=2(﹣2m+8)=﹣4m+16,(0<m<4);(3)存在,理由如下:∵PE⊥x轴于点E,PF⊥y轴于点F,OA⊥OB,∴四边形OEPF是矩形,∴EF=OP,当OP⊥AB时,此时EF最小,∵A(4,0),B(0,8),∴AB=4,∵S△AOB=OA×OB=AB×OP,∴OP=,∴EF最小=OP=.【点睛】主要考查了坐标轴上点的特点,三角形的面积公式,极值的确定,解本题的关键是求出三角形PAO的面积.22、(1)证明见解析;(1)1.【解析】

(1)根据平行四边形的判定和菱形的判定证明即可;(1)根据菱形的性质和勾股定理解答即可.【详解】(1)∵AB∥DC,∴∠CAB=∠ACD.∵AC平分∠BAD,∴∠CAB=∠CAD.∴∠CAD=∠ACD,∴DA=DC.∵AB=AD,∴AB=DC.∴四边形ABCD是平行四边形.∵AB=AD,∴四边形ABCD是菱形;(1)∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30,∠AOB=90°.∵AB=4,∴OB=1,AO=OC=1.∵CE∥DB,∴四边形DBEC是平行四边形.∴CE=DB=4,∠ACE=90°.∴.【点睛】本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.23、(1)证明见解析;(2)1.【解析】

(1)由平行线的性质及等腰三角形的性质得出,进而有,通过等量代换可得出,然后利用一组对边平行且相等即可证明四边形是平行四边形,然后再利用即可证明四边形是菱形;(2)过点作交于点,在含30°的直角三角形中求出FG的长度,然后利用即可求出面积.【详解】(1),.,,,,.,.,,又,.又,四边形是平行四边形.又,四边形是菱形.(2)过点作交于点.四边形是菱形,且,.,.又,.在中,,,..【点睛】本题主要考查平行线的性质,等腰三角形的判定,菱形的判定及性质,掌握平行线的性质,等腰三角形的性质,含30°的直角三角形的性质,菱形的判定及性质是解题的关键.24、(1)A点坐标为(3,3),B点坐标为(6,0);

(2)m=t(0<t<3).【解析】

(1)由题意得到B点坐标为(6,0),根据等腰直角三角形的性质即可解决问题;

(2)首先求出直线OA、OB、OC、BC的解析式.进而求出P、Q的坐标即可解决问题.【详解】(1)∵OB=6,

∴B点坐标为(6,0),过点A作x轴的垂线AM,∵∠OAB=90°且OA=AB,

∴△AOB为等腰直角三角形,

∴OM=BM=AM=OB=3,

∴A点坐标为(3,3);

(2)作CN⊥x轴于N,如图,

∵t=4时,直线l恰好过点C,

∴ON=4,

在Rt△OCN中,CN==3,

∴C点坐标为(4,−3),

设直线OC的解析式为y=kx(k≠0),

把C(4,−3)代入得4k=−3,解得k=,

∴直线OC的解析式为y=x,

设直线OA的解析式为y=ax(a≠0),

把A(3,3)代入得3a=3,解得a=1,

∴直线OA的解析式为y=x

∵P(t,0)(0<t<3),

∴Q(t,t),R(t,t),

∴QR=t−(t)=t,

即m=t(0<t<3).【点睛】本题考查四边形综合问题,解题的关键是掌握等腰直角三角形的性质、待定系数法求解析式.25、(1)见解析;(2);(3)().【解析】

(1)先证明△GDC≌△EDA,得∠GCD=∠EAD,推出AH⊥GC;(2)根据S△AGC=•AG•DC=•GC•AH,即可解决问题;(3)根据垂直平分线的性质可得结论.【详解】(1)在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,∵∠HEC=∠DEA,∴∠EHC=∠EDA=90°,∴AH⊥GC;(2)∵AD=3,DE=1,∴GC=AE=,∵∠DAE+∠AED=90°,∠DEA=∠CEH,∴∠DCG+∠HEC=90°,∴∠EHC=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.(3)由(1)得,AH即GC的中垂线∴AG=AC(中垂线的性质定理)∴()【点睛】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、三角形面积等知识.26、(1)1;(2)(,);(3)6+﹣3或6++3或2﹣2或8.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论