2015年第四届认证杯数学建模国际赛优秀1584a_第1页
2015年第四届认证杯数学建模国际赛优秀1584a_第2页
2015年第四届认证杯数学建模国际赛优秀1584a_第3页
2015年第四届认证杯数学建模国际赛优秀1584a_第4页
2015年第四届认证杯数学建模国际赛优秀1584a_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四届“认证杯”数学中国

数学建模国际赛编号专用页

参赛队伍的参赛队号:(请各个参赛队提前填写好):

1584

竞赛统一编号(由竞赛送至评委团前编号):

竞赛评阅编号(由竞赛评委团评阅前进行编号):

Theslimlineseatsontheairne

:

Someairlinesareintroducingnew“slimline”seatsineconomyclass,whichtheoreticallyallowairlinestoincreasecapacity.However,manypassengershaveexpresseddispleasurewiththeseseats.Becausethecommonpointofthemisathinnerbackteandlesspaddingwhichsignificantlyaffectingpassengers’backprpersupport,andcause fortduringthejourney.

Inordertomaketheseatmorecomfortableandimproveservicequality,herewe plishtwotasks:

·Task1:Optimizethebestseatbacktecurve

Whenthebodybackvertebraisinanaturalform,thebacktensionisthelowest,sothatpassengerswillbemorecomfortableduringthevoyage.Consideringhumanbodyindifferentpositions,thesizeofthecompressive,shear

andbendingmomentthattheeverywhereofthevertebrabear,wecandeterminethebendingstateofthevertebra.Respectivelymakingmechanicalysisofrigidcylindervertebraeandflexiblecylinderintervertebraldisc,thenusingrecursivemethod,thentheshear,bendingmomentandcompressiveoneachvertebraandintervertebraldiskareobtained,respectivelysummingthreephysicaltiesastotalshear,totalbendingmomentandtotalcompressive.Thenwewillsummingthetotalshear,totalbendingmomentandtotalcompressive asthevalueof fortatthattime.Sothatwecangetamathematicalmodeltoassesspassenger fort,atthistimethemodelisanoptimizationproblem,wecansolvingthisproblembysoftwareLingo,togetaseriesoftheanglevaluewhenbackismostcomfortable.

Then,weuse,Fourierfittingandcubicsplineinterpolationtofittheseriesofanglevalue,sowecandrawanoptimalcurve,thiscurveisnotonlythevertebra’scurvewhenbodyfeelmostcomfortable,butalsoistheoptimalseatbacktecurvethatcanmakepassengersmostcomfortable.

·Task2:Designawell-lookingadvertisingmaterial

ShowingthebestseatbacktecurveobtainedinTask1、thedesignofthe“slimline”seats,intheme introducingourfeaturesandadvantagesofthe"slimline"seats.

Whileconsideringtheaestheticsofadvertising",thereareillustrationsandtextdescriptioninthematerial,theexpressionofproductisvivid,youcanintuitivelyaccesstotheinformation.

:Ergonomics.Biomechanics.Optimizationproblem,Lingo,Fourierfitting,Cubicsplineinterpolation,

Introduction

Whysomeairlinesareintroducing"slimline"seats

Withthedevelopmentofscienceandtechnology,Aviationtechnologyalsogotgreatdevelopment,therefore,relevantairneseatstechnologyresearchhas ethefocusofattention.Fortherequirementoftheairneseats,firstofallshouldbesafe,thesecondistoletthepassengerssittingcomfortable,ithasastricttechnicalrequirementsandspecifications.Thusforairlines,airpassengerseat’sselectionandmaintenanceareparticularlyimportant.Generally,theairlineswhenchoosingseats,inadditiontoconsidersafety,comfort,diversity,therearesomewilltendtochooselight,easytomaintain,theseat-"slimline"seatstoreducestheorderofthepassengerseatcostsandmaintenancecosts.

Thecharacteristicsofthe"slimline"seats

"Slimline"seats,inadditiontoweighingless,theoreticallyallowairlinestoincreasecapacitywithoutsignificantlyaffectingpassengercomfort.Theseseatsmayormaynotfeaturemoveableheadrests,andgenerallydonotfeatureadjustablelumbarsupport.Thecommonpointofthemisathinnerbackteandlesspadding.

Theapplicationofhumanbodyengineeringinthedesignoftheseatbackte

Thekeytothedesignofseatbackteistheseatbacktecurve.Whendesigningbackte,weusuallyusetheposturethatthevertebrainanaturalextensionofthestateasabasic.Notonlydoesseatbacktesupportthelumbar,butalsosupportthebackandhead,otherwiseitcan’tmaintainanaturalposture.Itstiltangleshallnotbelessthan90°inanycase,withtheimprovementofitstherestfunctionwillincrease,usually95°~120°isappropriate.Relationshipbetweentiltangleandsupportingpointcanbesummarizedintothefollowingpoints:

Whenthetiltangleissmall,selectsupportingpointinthesecondtothethirdlumbarvertebra;

Whenthetiltangleislarge,Supportingpointmovestothelowerpartofthethoracicspine;

Whenthetiltangleexceeds114°,itisnecessaryforthelumbarandlowerthoracicandheadthreepointssupport.

Accordingtotheabovepoints,supportpositionisdetermined,sothatwecandesignthegeometryoftheseatbackte,wecanalsoadjustthehardnessofthebackte,suchasmakethesupportingpointlargerhardnessthansomeotherparts,sowecanmaketheseatbacktemorecomfortable.

Theapplicationofbiomechanicsinthedesignoftheseatbackte

Biomechanicalysisshows,whentheanglebetweentheseatandthebackrestisbetween90°-120°,theshearbetweenseatandIschialtuberositycanbecompleyeliminated.Atthistimebuttockdon’thasslidingtrend.Inthiscase,wedoysisofvertebraeandintervertebraldiscwillconsiderthreemain,pressureonvertebraandintervertebraldisc,shearandthestresswhenintervertebraldiscbending.Accordingtotheexperience,whenthevertebrasufferedsmallerandbendingmoment,peoplewillfeelmorecomfortable.

TheDescriptionofProblem

Afterresearchingontheproblem,webelievethatthekeytosolvingproblemsisobtainingtheoptimalcurveoftheseatbackte,inordertoachievetheairne’sgoalsthattheycantakeadvantageofthe"slimline"seatswithoutchangingthemaininternalstructureandatthesametimemaketheseatmorecomfortable.Secondly,wewillwriteanadvertisingmaterial,tointroducethefeaturesandadvantagesofourdesignofthis"slimline"seats.

Theoptimalseatbacktecurve

Setanappropriateseatbacktecurvecanreducebacktension,sothatpassengerswillbemorecomfortableduringthevoyage.

Thebodywillfeelmostcomfortablewhenthebodybackvertebraisinanaturalform,toachievethis,theshapeoftheseatshouldbeconsistentwiththenaturalcurvatureofthevertebra.So,iftheseatbacktecurveisclosetothehumanecologicalcurve,itwillmaketheridecomfortgreatlyimproved.

Tomeasurecomfort,weconsiderthehumanbodyindifferentpositions,thesizeofthecompressive,shear andbendingmomentthattheeverywhereofthevertebrabear,establishedamathematicalmodelabouttheresultingphysical fort.Thefocusistoyzetheconditionsofthe24vertebraandIntervertebraldisc(inthiscasetheseriesofanglebetweenthemandverticaldirectionaredifferent):Respectivelystressysisfortherigidcylindervertebraandelasticdisc,atthesametimeusetherecursivemethod,thentheshear,bendingmomentandcompressiveoneachvertebraandintervertebraldiskareobtained,thenrespectivelysummingthreephysicaltiesastotalshear,totalbendingmomentandtotalcompressive.Thenwewillsummingthetotalshear,totalbendingmomentandtotalcompressiveasthevalueof fortatthattime.Whilethelowestvalueof fortcorrespondingtoasetofanglewhichcanbeuniquelydeterminedbythebendingstatuswherethecompositionofsonthevertebraissmallest.

Throughfindingoptimalsolutionandfittingthedata,wecanfindasmoothcurve.Thiscurveisnotonlythecurveofvertebrawhenitismostcomfortable,butalsocanbeseenastheseatbacktecurvethatcanmakepassengersmostcomfortable.Asaresult,wecangetthe

completemathematicalmodelwhichnotonlycanassessmentthe fortvalueofvertebrabutalsocanobtaintheoptimalseatbacktecurve.

Advertisingmaterial

Theadvertisingmaterialswillincludetheoptimalseatbacktecurvewhichwegotthroughthemathematicalmodeling,thedesigndrawingsofthe"slimline"seatsandourfeaturesandadvantagesofthe"slimline"seats

FundamentalAssumption

Eachsectionvertebraearerigid,equallength;Intervertebraldisciselasticmaterial.

Radiusofthespineisthesameeverywhere.

Ignoretheweightofintervertebraldisc,andthemassofthevertebraareuniformlydispersed.

Vertebraestressdeformationdoesnotoccur;Thedeformationofintervertebraldiscispurebending,don’tconsideringthetransversetwist,etc.

Allpassengersarenormaladults(24blockvertebrae).

Passengersposeisstilldependsonthebackofthechairforalongtime.

Symbols

Symbol Meaning

𝑁𝑢𝑖 Thecompressive ontheuppersurfaceofvertebra

𝑁𝑑𝑖 Thecompressive onthelowersurfaceofvertebraTheshearparalleledtotheuppersurfaceonthe

𝑄𝑢𝑖 vertebra

𝑄𝑑𝑖 Theshear paralleledtothelowersurfaceonthevertebra

Theanglebetweentheverticaldirectionofthevertebraand

α𝑖(𝑖=1,2,……,24)

𝐹𝑥1

Theactualverticaldirection

Theresultantonthevertebrainthehorizontal

direction

𝐹𝑦1 Theresultant onthevertebraintheverticaldirection

* densityofbone

a Thelengthofeachvertebra

g Accelerationofgravity

Theresultantontheintervertebraldiskinthe

𝐹𝑥2

horizontaldirection

𝐹𝑦2 Theresultant ontheintervertebraldiskinthevertical

direction

R Theradiusoftheintervertebraldisk’scrosssection

M Thebendingmomentactingontheintervertebraldisc

Modeling

Basedontheassumption,whenwedomechanicalysisofvertebraeandintervertebraldiscwillconsiderthreemain , pressureonvertebraandintervertebraldisc,shearandthestresswhenintervertebraldiscbending.Accordingtothebiomechanicsandhumanbodyengineering,whenthevertebrasufferedsmaller andbendingmoment,peoplewillfeelmorecomfortable.Wecalculatethebendingmoment,compressive andshearonthevertebraandintervertebralineachunit,thenwewillsummingthetotalshear ,

totalbendingmomentandtotalcompressiveasthevalueof fortatthattime.Sothevalueof fortwillincreasewiththeincreaseofthesumoftotalcompressive,totalshearandtotalbendingmoment.

Firstlywedomechanicalysisforvertebraandintervertebraldiskrespectively,providingconstraintsforseekinganoptimalcurveoftheseatbackte.

ModelBasic

Mechanical ysisofvertebra

(figure1:Mechanical ysisofavertebra)

Asshowninfigure,makemechanical ysisofvertebra.

Accordingtotheassumption,vertebraearerigidandstressdeformationdoesnotoccur.Sothereare4onthevertebra:

Thecompressive ontheuppersurface𝑁𝑢𝑖

Thecompressive onthelowersurface𝑁𝑑𝑖

Theshear paralleledtotheuppersurface𝑄𝑢𝑖

Theshear paralleledtothelowersurface𝑄𝑑𝑖

Accordingtotheassumption,passengersarestilldependsonthebackofthechairforalongtime.Sotheonthevertebraisbalanced.Atthistime,theanglebetweentheverticaldirectionofthevertebraandtheactualverticaldirectionisα𝑖(𝑖=1,2,……,24).

Supposetheresultantonthevertebrainthehorizontaldirectionis𝐹𝑥1,whilethatinverticaldirectionis𝐹𝑦1,sothat:

{𝐹𝑥1𝑖=0

𝐹𝑦1𝑖=0

24

(𝑖=1,2,……,24)

∑𝐹𝑥1𝑖=0

𝑖=124

∑𝐹𝑦1𝑖=0

{𝑖=1

Getthefirstpartoftheconstraintconditionsoftheoptimizationproblem:

(𝑄𝑢𝑖−𝑄𝑑𝑖)cos𝛼𝑖−(𝑁𝑢𝑖−𝑁𝑑𝑖)sin𝛼𝑖=0

{

(𝑄𝑢𝑖−𝑄𝑑𝑖)sin𝛼𝑖+(𝑁𝑢𝑖−𝑁𝑑𝑖)cos𝛼𝑖+𝜆ag=0

(𝑖=1,2,……,24)

Aftersimplification:

{𝑁𝑑𝑖−𝑁𝑢𝑖=𝜆ag·cos𝛼𝑖

𝑄𝑢𝑖−𝑄𝑑𝑖=𝜆ag·sin𝛼𝑖

Andaccordingtotheassumption:

(𝑖=1,2,……,24)

𝛼3=𝛼12=𝛼21=0.

Mechanical ysisofintervertebraldisk

(figure2:Mechanical ysisofanintervertebraldisk)

Asshowninfigure,makemechanical ysisofintervertebraldisk.

Accordingtotheassumption,intervertebraldiskisrigidandstressdeformationdoesnotoccur.

Thecompressive ontheuppersurface𝑁𝑑𝑖

Thecompressive onthelowersurface𝑁𝑢(𝑖+1)

Theshear paralleledtotheuppersurface𝑄𝑑𝑖

Theshear paralleledtothelo rsurface𝑄𝑢(𝑖+1)

Accordingtotheassumption,passengersarestilldependsonthebackofthechairforalongtime.Sotheontheintervertebraldiskisbalanced.Atthistime,theanglebetweentheverticaldirectionoftheuppersurfaceandlowersurfaceoftheintervertebraldiskandtheactualverticaldirectionarerespectivelyα𝑖and𝛼i+1(𝑖=1,2,……,23).

Supposetheresultantontheintervertebraldiskinthehorizontaldirectionis𝐹𝑥2,whilethatinverticaldirectionis𝐹𝑦2,sothat:

{𝐹𝑥2𝑖=0

𝐹𝑦2𝑖=0

23

(𝑖=1,2,……,23)

∑𝐹𝑥2𝑖=0

𝑖=123

∑𝐹𝑦2𝑖=0

{𝑖=1

Getthesecondpartoftheconstraintconditionsoftheoptimizationproblem:

𝑄𝑑𝑖·cos𝛼𝑖+𝑁𝑢(𝑖+1)·sin𝛼i+1−𝑁𝑑𝑖·sin𝛼i+1−𝑄𝑢(𝑖+1)·cos𝛼𝑖=0

{

𝑁𝑑𝑖·cos𝛼𝑖+𝑄𝑑𝑖·sin𝛼i−𝑁𝑢(𝑖+1)·cos𝛼𝑖+1−𝑄𝑢(𝑖+1)·sin𝛼i+1−𝜆ag=0

(𝑖=1,2,……,23)

Accordingtotheassumption,thedeformationofintervertebraldiscispurebending.

SupposeRistheradiusofthecrosssection,Misthebendingmomentactingontheintervertebraldisc.

2 3

𝑀𝑖=3𝐸𝛼𝑖𝑅

Buildingoptimizationproblem

Bythistime,webuildanoptimizedmodeloftheangle’ssizeoftheseatbacktethroughout:

Theobjectivefunction:

=∑ +∑ +∑ +∑ +∑

Constraintcondition

𝛼𝑖∈[0,25°]

𝑁𝑑𝑖−𝑁𝑢𝑖=𝜆ag·cos𝛼𝑖

𝑄𝑢𝑖−𝑄𝑑𝑖=𝜆ag·sin𝛼𝑖

𝑄𝑑𝑖·cos𝛼𝑖+𝑁𝑢(𝑖+1)·sin𝛼i+1−𝑁𝑑𝑖·sin𝛼i+1−𝑄𝑢(𝑖+1)·cos𝛼𝑖=0

𝑁𝑑𝑖·cos𝛼𝑖+𝑄𝑑𝑖·sin𝛼i−𝑁𝑢(𝑖+1)·cos𝛼𝑖+1−𝑄𝑢(𝑖+1)·sin𝛼i+1−𝜆ag=0

{ 𝛼3=𝛼12=𝛼21=0

(𝑖=1,2,……,24)

UsingoptimizationsoftwareLingotoruntheprogram,wegotAsetofoptimalvalueα(usinganglesystem)(SeeAppendix-Annex1)

𝑖

𝑓`(x)=tan𝛼𝑖,(𝑖=1,2,……,24)

Establishtwo-dimensionalrectangularcoordinatesystemonthebasisofsetingthetopofthevertebtraascoordinateoriginandthethedirectionofverticaldownwardasx-axis’positivedirection.

Leteachvertebralengthis25,sowecangettheobjectivefunction’sderivativedistributionat25points.(SeeAppendix-Annex2)

fitting

WecanuseFourierfunctionbysoftware :

methodtoobtaintheobjectivefunction’scurveofderivative

𝟖

f(x)=∑𝐚·𝐬(𝐛x+𝐜)

=

Thecoefficientamongthema,b,cis:

Thegraphicsis:

(figure2:ThederivativefunctioncurveofobjectivefunctionobtainedbyFourierfittingmethod)

Obtainedtheobjectivefunctionbyintegratingthefunction:

𝑥

F(x)=∫𝑓(𝑥)dx+C

0

(Cisaconstant)

CalculatedvalueofCbyundeterminedcoefficientmethodandthenweobtainedtheexpressionofobjectivefunctionF(x)is:

8 𝑎𝑖

𝑓(𝑥)=∑− ·cos(𝑏∗𝑥+𝑐)

𝑏𝑖 𝑖 𝑖

𝑖=1

Thevalueofcoefficientis:

Drawobjectivefunctioncurvebysoftware (ThealgorithmisintheAppendix–Annex3)

(figure3:Theobjectivefunction’scurveobtainedbyFourierfittingmethod)

Error ysis:

Sumofsquaresduetoerror、R-square、AdjustedR-square、RMSEare:SSE:0.000874

R-square:0.9974

AdjustedR-square:0.991

RMSE:0.01117

ThemoreSSEisclosetozerotheerrorissmaller,themoreR-squareiscloseto1thecurveisbetterfitting,themoreRMSSEiscloseto0,thecurveisbetterfitting.

ThusSSE>0.0001,RMSE>0.01theerrorisrelativelylarge.Theerrorrangecorrespondingtothecurveisshownbelow:

(figure5:Theobjectivefunctionandthebandedareaformedbyerrorrange)

SoweneedtofindanoptimizationschemetomakeSSE<0.0001、RMSE<0.0.

ModelOptimization

OuroptimizationpurposesistofindabetteroptimizationmethodtomakeRMSE<0.01、SSE<0.0001、AdjustedR-squaresufficientlyclose1,throughyzingandfindingrelevantinformation,wechoosesmoothingsplinefittingmethodtooptimizederivativefunctioncurve.

(ThealgorithmofisintheAppendix–Annex4)

“coefs”representativesinterpolatedpiecewisefunctioncoefficientmatrix,“breaks”representativespiecewiseintervalnodematrix,thefittingcurveimagesis:

(figure6:Thederivativefunctioncurveofobjectivefunctionfittedoutbysmoothingsplinemethod)

Its’SSE、R-square、AdjustedR-square、RMSEare:

SSE:8.409e-005

R-square:0.9997

AdjustedR-square:0.9939

RMSE:0.00917

Atthistime,thecasewhereRMSE<0.01、SSE<0.0001satisfyerrorcontrollablerangeandR2greaterthantheprevious,thefittingdegreeisbetter.(ThealgorithmisintheAppendix–Annex5)

A=sp.coefsA2=sp.breaks

WeobtainedcoefficientmatrixBcorrespondingtotheprimitivefunctionwhichthefunctionCorrespondingtothecoefficientmatrixAcorrespondingto:(ThealgorithmandmatrixBareintheAppendix–Annex6)

Sotheobjectivefunctioncanberepresentedasapiecewisepolynomialfunction,Andthe

coefficientmatrixofinterpolationpolynomialoneachpiecewiseintervalcoefs=B,piecewiseintervalnodematrixA2,numberofsegmentsis25,theorderofpolynomialis5,wedrawtheobjectivefunctionimageswithasfollows:

(figure7:Theobjectivefunction’scurveobtainedbysmoothingsplinemethod)

ComparingoptimizedModelcurvewithpreviousmodelcurve:

(figure8:previousmodelcurveandoptimizedModelcurve)

Therefore,wefinallyobtainedagraphasfollows(aftercoordinatetransformedinequalproportion):

(figure9:Theoptimalcurveincoordinatethattransformedinequalproportions)

Thefunctionexpressionisapolynomialfunctionwhichcoefficientmatrixcoefs=B,piecewiseintervalnodematrixA2,numberofsegmentsis25,theorderofpolynomialis5.

economyclass.

Ourairlinesarenowintroducinganew"slimline"seatsin

Theseatback tecurvewhichnotsuitableforthevertebramakespassengersfeeltiredand

fortable

Whileournewslimlineseatswillliberatingmorepassengerspace,andmakeyoumorecomefortable.

Forithastheoptimalseatback tecurve,andnewtypeoffillmaterial.

Theapplicationofbiomechanicsinthedesignoftheseatback te

Wesummingthetotalshear ,totalbendingmomentandtotalcompressive asthevalueof

fortatthattime.

Whilethelowestvalueof

fort

correspondingtoasetofanglewhich

canbeuniquelydeterminedbythebendingstatuswherethecomposition

of sonthevertebraissmallest.

Throughfindingoptimalsolutionandfittingthedata,wecanfindasmoothcurve.ThiscurveIsnotonlythecurveofvertebrawhenitismostcomfortable,butalsocanbeseenastheseatback tecurvethatcan

makepassengersmostcomfortable.

Appendix:

Annex1

Columns1through8

9.3841 0.2142 -8.5110 -14.9356 -17.9228 -17.2622 -13.5392 -7.8644

Columns9through16

-1.5402 4.2764

8.8241

11.9555

14.6021

19.2318

27.9011

36.2675

Columns17through24

32.1341 6.9702

-26.0330

-42.4099

-39.3301

-28.4607

-19.9661

-15.6969

Column25

-13.4032

Annex2

Columns1through8

0.0522 0.0012 -0.0473 -0.0832 -0.0999 -0.0962 -0.0754 -0.0437

Columns9through16

-0.0086 0.0238 0.0491 0.0665 0.0813 0.1073 0.1563 0.2043

Columns17through24

0.1804 0.0387 -0.1456 -0.2401 -0.2220 -0.1594 -0.1114 -0.0874

Column25

-0.0746

Annex3

>>t=1:600;

>>

gx=-((0.07859./0.02094).*cos(0.02094.*t+0.883)+(0.1386./0.01043).*cos(0.01043.*t-1.978)+(0.07079.

/0.03142).*cos(0.03142.*t+2.002)+(0.07358./0.005429).*cos(0.005429.*t+2.026)+(0.03204./0.04189).

*cos(0.04189.*t-2.539)+(0.01488./0.05236).*cos(0.05236.*t-0.4748)+(0.008279/0.06283).*cos(0.006283.*t+1.212)+(0.002986./0.0733).*cos(0.0733.*t+2.156));

>>plot(t,gx)

Annex4

>>x=0:25:600;

>>sp=spline(x,k)sp=

form:'pp'

breaks:[1x25double]coefs:[24x4double]pieces:24

order:4

dim:1

Annex

5

A=

0.0000

-0.0000

-0.0019

0.0522

0.0000

0.0000

-0.0021

0.0012

0.0000

0.0000

-0.0017

-0.0473

0.0000

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论