




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四届“认证杯”数学中国
数学建模国际赛编号专用页
参赛队伍的参赛队号:(请各个参赛队提前填写好):
1584
竞赛统一编号(由竞赛送至评委团前编号):
竞赛评阅编号(由竞赛评委团评阅前进行编号):
Theslimlineseatsontheairne
:
Someairlinesareintroducingnew“slimline”seatsineconomyclass,whichtheoreticallyallowairlinestoincreasecapacity.However,manypassengershaveexpresseddispleasurewiththeseseats.Becausethecommonpointofthemisathinnerbackteandlesspaddingwhichsignificantlyaffectingpassengers’backprpersupport,andcause fortduringthejourney.
Inordertomaketheseatmorecomfortableandimproveservicequality,herewe plishtwotasks:
·Task1:Optimizethebestseatbacktecurve
Whenthebodybackvertebraisinanaturalform,thebacktensionisthelowest,sothatpassengerswillbemorecomfortableduringthevoyage.Consideringhumanbodyindifferentpositions,thesizeofthecompressive,shear
andbendingmomentthattheeverywhereofthevertebrabear,wecandeterminethebendingstateofthevertebra.Respectivelymakingmechanicalysisofrigidcylindervertebraeandflexiblecylinderintervertebraldisc,thenusingrecursivemethod,thentheshear,bendingmomentandcompressiveoneachvertebraandintervertebraldiskareobtained,respectivelysummingthreephysicaltiesastotalshear,totalbendingmomentandtotalcompressive.Thenwewillsummingthetotalshear,totalbendingmomentandtotalcompressive asthevalueof fortatthattime.Sothatwecangetamathematicalmodeltoassesspassenger fort,atthistimethemodelisanoptimizationproblem,wecansolvingthisproblembysoftwareLingo,togetaseriesoftheanglevaluewhenbackismostcomfortable.
Then,weuse,Fourierfittingandcubicsplineinterpolationtofittheseriesofanglevalue,sowecandrawanoptimalcurve,thiscurveisnotonlythevertebra’scurvewhenbodyfeelmostcomfortable,butalsoistheoptimalseatbacktecurvethatcanmakepassengersmostcomfortable.
·Task2:Designawell-lookingadvertisingmaterial
ShowingthebestseatbacktecurveobtainedinTask1、thedesignofthe“slimline”seats,intheme introducingourfeaturesandadvantagesofthe"slimline"seats.
Whileconsideringtheaestheticsofadvertising",thereareillustrationsandtextdescriptioninthematerial,theexpressionofproductisvivid,youcanintuitivelyaccesstotheinformation.
:Ergonomics.Biomechanics.Optimizationproblem,Lingo,Fourierfitting,Cubicsplineinterpolation,
Introduction
Whysomeairlinesareintroducing"slimline"seats
Withthedevelopmentofscienceandtechnology,Aviationtechnologyalsogotgreatdevelopment,therefore,relevantairneseatstechnologyresearchhas ethefocusofattention.Fortherequirementoftheairneseats,firstofallshouldbesafe,thesecondistoletthepassengerssittingcomfortable,ithasastricttechnicalrequirementsandspecifications.Thusforairlines,airpassengerseat’sselectionandmaintenanceareparticularlyimportant.Generally,theairlineswhenchoosingseats,inadditiontoconsidersafety,comfort,diversity,therearesomewilltendtochooselight,easytomaintain,theseat-"slimline"seatstoreducestheorderofthepassengerseatcostsandmaintenancecosts.
Thecharacteristicsofthe"slimline"seats
"Slimline"seats,inadditiontoweighingless,theoreticallyallowairlinestoincreasecapacitywithoutsignificantlyaffectingpassengercomfort.Theseseatsmayormaynotfeaturemoveableheadrests,andgenerallydonotfeatureadjustablelumbarsupport.Thecommonpointofthemisathinnerbackteandlesspadding.
Theapplicationofhumanbodyengineeringinthedesignoftheseatbackte
Thekeytothedesignofseatbackteistheseatbacktecurve.Whendesigningbackte,weusuallyusetheposturethatthevertebrainanaturalextensionofthestateasabasic.Notonlydoesseatbacktesupportthelumbar,butalsosupportthebackandhead,otherwiseitcan’tmaintainanaturalposture.Itstiltangleshallnotbelessthan90°inanycase,withtheimprovementofitstherestfunctionwillincrease,usually95°~120°isappropriate.Relationshipbetweentiltangleandsupportingpointcanbesummarizedintothefollowingpoints:
Whenthetiltangleissmall,selectsupportingpointinthesecondtothethirdlumbarvertebra;
Whenthetiltangleislarge,Supportingpointmovestothelowerpartofthethoracicspine;
Whenthetiltangleexceeds114°,itisnecessaryforthelumbarandlowerthoracicandheadthreepointssupport.
Accordingtotheabovepoints,supportpositionisdetermined,sothatwecandesignthegeometryoftheseatbackte,wecanalsoadjustthehardnessofthebackte,suchasmakethesupportingpointlargerhardnessthansomeotherparts,sowecanmaketheseatbacktemorecomfortable.
Theapplicationofbiomechanicsinthedesignoftheseatbackte
Biomechanicalysisshows,whentheanglebetweentheseatandthebackrestisbetween90°-120°,theshearbetweenseatandIschialtuberositycanbecompleyeliminated.Atthistimebuttockdon’thasslidingtrend.Inthiscase,wedoysisofvertebraeandintervertebraldiscwillconsiderthreemain,pressureonvertebraandintervertebraldisc,shearandthestresswhenintervertebraldiscbending.Accordingtotheexperience,whenthevertebrasufferedsmallerandbendingmoment,peoplewillfeelmorecomfortable.
TheDescriptionofProblem
Afterresearchingontheproblem,webelievethatthekeytosolvingproblemsisobtainingtheoptimalcurveoftheseatbackte,inordertoachievetheairne’sgoalsthattheycantakeadvantageofthe"slimline"seatswithoutchangingthemaininternalstructureandatthesametimemaketheseatmorecomfortable.Secondly,wewillwriteanadvertisingmaterial,tointroducethefeaturesandadvantagesofourdesignofthis"slimline"seats.
Theoptimalseatbacktecurve
Setanappropriateseatbacktecurvecanreducebacktension,sothatpassengerswillbemorecomfortableduringthevoyage.
Thebodywillfeelmostcomfortablewhenthebodybackvertebraisinanaturalform,toachievethis,theshapeoftheseatshouldbeconsistentwiththenaturalcurvatureofthevertebra.So,iftheseatbacktecurveisclosetothehumanecologicalcurve,itwillmaketheridecomfortgreatlyimproved.
Tomeasurecomfort,weconsiderthehumanbodyindifferentpositions,thesizeofthecompressive,shear andbendingmomentthattheeverywhereofthevertebrabear,establishedamathematicalmodelabouttheresultingphysical fort.Thefocusistoyzetheconditionsofthe24vertebraandIntervertebraldisc(inthiscasetheseriesofanglebetweenthemandverticaldirectionaredifferent):Respectivelystressysisfortherigidcylindervertebraandelasticdisc,atthesametimeusetherecursivemethod,thentheshear,bendingmomentandcompressiveoneachvertebraandintervertebraldiskareobtained,thenrespectivelysummingthreephysicaltiesastotalshear,totalbendingmomentandtotalcompressive.Thenwewillsummingthetotalshear,totalbendingmomentandtotalcompressiveasthevalueof fortatthattime.Whilethelowestvalueof fortcorrespondingtoasetofanglewhichcanbeuniquelydeterminedbythebendingstatuswherethecompositionofsonthevertebraissmallest.
Throughfindingoptimalsolutionandfittingthedata,wecanfindasmoothcurve.Thiscurveisnotonlythecurveofvertebrawhenitismostcomfortable,butalsocanbeseenastheseatbacktecurvethatcanmakepassengersmostcomfortable.Asaresult,wecangetthe
completemathematicalmodelwhichnotonlycanassessmentthe fortvalueofvertebrabutalsocanobtaintheoptimalseatbacktecurve.
Advertisingmaterial
Theadvertisingmaterialswillincludetheoptimalseatbacktecurvewhichwegotthroughthemathematicalmodeling,thedesigndrawingsofthe"slimline"seatsandourfeaturesandadvantagesofthe"slimline"seats
FundamentalAssumption
Eachsectionvertebraearerigid,equallength;Intervertebraldisciselasticmaterial.
Radiusofthespineisthesameeverywhere.
Ignoretheweightofintervertebraldisc,andthemassofthevertebraareuniformlydispersed.
Vertebraestressdeformationdoesnotoccur;Thedeformationofintervertebraldiscispurebending,don’tconsideringthetransversetwist,etc.
Allpassengersarenormaladults(24blockvertebrae).
Passengersposeisstilldependsonthebackofthechairforalongtime.
Symbols
Symbol Meaning
𝑁𝑢𝑖 Thecompressive ontheuppersurfaceofvertebra
𝑁𝑑𝑖 Thecompressive onthelowersurfaceofvertebraTheshearparalleledtotheuppersurfaceonthe
𝑄𝑢𝑖 vertebra
𝑄𝑑𝑖 Theshear paralleledtothelowersurfaceonthevertebra
Theanglebetweentheverticaldirectionofthevertebraand
α𝑖(𝑖=1,2,……,24)
𝐹𝑥1
Theactualverticaldirection
Theresultantonthevertebrainthehorizontal
direction
𝐹𝑦1 Theresultant onthevertebraintheverticaldirection
* densityofbone
a Thelengthofeachvertebra
g Accelerationofgravity
Theresultantontheintervertebraldiskinthe
𝐹𝑥2
horizontaldirection
𝐹𝑦2 Theresultant ontheintervertebraldiskinthevertical
direction
R Theradiusoftheintervertebraldisk’scrosssection
M Thebendingmomentactingontheintervertebraldisc
Modeling
Basedontheassumption,whenwedomechanicalysisofvertebraeandintervertebraldiscwillconsiderthreemain , pressureonvertebraandintervertebraldisc,shearandthestresswhenintervertebraldiscbending.Accordingtothebiomechanicsandhumanbodyengineering,whenthevertebrasufferedsmaller andbendingmoment,peoplewillfeelmorecomfortable.Wecalculatethebendingmoment,compressive andshearonthevertebraandintervertebralineachunit,thenwewillsummingthetotalshear ,
totalbendingmomentandtotalcompressiveasthevalueof fortatthattime.Sothevalueof fortwillincreasewiththeincreaseofthesumoftotalcompressive,totalshearandtotalbendingmoment.
Firstlywedomechanicalysisforvertebraandintervertebraldiskrespectively,providingconstraintsforseekinganoptimalcurveoftheseatbackte.
ModelBasic
Mechanical ysisofvertebra
(figure1:Mechanical ysisofavertebra)
Asshowninfigure,makemechanical ysisofvertebra.
Accordingtotheassumption,vertebraearerigidandstressdeformationdoesnotoccur.Sothereare4onthevertebra:
Thecompressive ontheuppersurface𝑁𝑢𝑖
Thecompressive onthelowersurface𝑁𝑑𝑖
Theshear paralleledtotheuppersurface𝑄𝑢𝑖
Theshear paralleledtothelowersurface𝑄𝑑𝑖
Accordingtotheassumption,passengersarestilldependsonthebackofthechairforalongtime.Sotheonthevertebraisbalanced.Atthistime,theanglebetweentheverticaldirectionofthevertebraandtheactualverticaldirectionisα𝑖(𝑖=1,2,……,24).
Supposetheresultantonthevertebrainthehorizontaldirectionis𝐹𝑥1,whilethatinverticaldirectionis𝐹𝑦1,sothat:
{𝐹𝑥1𝑖=0
𝐹𝑦1𝑖=0
24
(𝑖=1,2,……,24)
∑𝐹𝑥1𝑖=0
𝑖=124
∑𝐹𝑦1𝑖=0
{𝑖=1
Getthefirstpartoftheconstraintconditionsoftheoptimizationproblem:
(𝑄𝑢𝑖−𝑄𝑑𝑖)cos𝛼𝑖−(𝑁𝑢𝑖−𝑁𝑑𝑖)sin𝛼𝑖=0
{
(𝑄𝑢𝑖−𝑄𝑑𝑖)sin𝛼𝑖+(𝑁𝑢𝑖−𝑁𝑑𝑖)cos𝛼𝑖+𝜆ag=0
(𝑖=1,2,……,24)
Aftersimplification:
{𝑁𝑑𝑖−𝑁𝑢𝑖=𝜆ag·cos𝛼𝑖
𝑄𝑢𝑖−𝑄𝑑𝑖=𝜆ag·sin𝛼𝑖
Andaccordingtotheassumption:
(𝑖=1,2,……,24)
𝛼3=𝛼12=𝛼21=0.
Mechanical ysisofintervertebraldisk
(figure2:Mechanical ysisofanintervertebraldisk)
Asshowninfigure,makemechanical ysisofintervertebraldisk.
Accordingtotheassumption,intervertebraldiskisrigidandstressdeformationdoesnotoccur.
Thecompressive ontheuppersurface𝑁𝑑𝑖
Thecompressive onthelowersurface𝑁𝑢(𝑖+1)
Theshear paralleledtotheuppersurface𝑄𝑑𝑖
Theshear paralleledtothelo rsurface𝑄𝑢(𝑖+1)
Accordingtotheassumption,passengersarestilldependsonthebackofthechairforalongtime.Sotheontheintervertebraldiskisbalanced.Atthistime,theanglebetweentheverticaldirectionoftheuppersurfaceandlowersurfaceoftheintervertebraldiskandtheactualverticaldirectionarerespectivelyα𝑖and𝛼i+1(𝑖=1,2,……,23).
Supposetheresultantontheintervertebraldiskinthehorizontaldirectionis𝐹𝑥2,whilethatinverticaldirectionis𝐹𝑦2,sothat:
{𝐹𝑥2𝑖=0
𝐹𝑦2𝑖=0
23
(𝑖=1,2,……,23)
∑𝐹𝑥2𝑖=0
𝑖=123
∑𝐹𝑦2𝑖=0
{𝑖=1
Getthesecondpartoftheconstraintconditionsoftheoptimizationproblem:
𝑄𝑑𝑖·cos𝛼𝑖+𝑁𝑢(𝑖+1)·sin𝛼i+1−𝑁𝑑𝑖·sin𝛼i+1−𝑄𝑢(𝑖+1)·cos𝛼𝑖=0
{
𝑁𝑑𝑖·cos𝛼𝑖+𝑄𝑑𝑖·sin𝛼i−𝑁𝑢(𝑖+1)·cos𝛼𝑖+1−𝑄𝑢(𝑖+1)·sin𝛼i+1−𝜆ag=0
(𝑖=1,2,……,23)
Accordingtotheassumption,thedeformationofintervertebraldiscispurebending.
SupposeRistheradiusofthecrosssection,Misthebendingmomentactingontheintervertebraldisc.
2 3
𝑀𝑖=3𝐸𝛼𝑖𝑅
Buildingoptimizationproblem
Bythistime,webuildanoptimizedmodeloftheangle’ssizeoftheseatbacktethroughout:
Theobjectivefunction:
=∑ +∑ +∑ +∑ +∑
Constraintcondition
𝛼𝑖∈[0,25°]
𝑁𝑑𝑖−𝑁𝑢𝑖=𝜆ag·cos𝛼𝑖
𝑄𝑢𝑖−𝑄𝑑𝑖=𝜆ag·sin𝛼𝑖
𝑄𝑑𝑖·cos𝛼𝑖+𝑁𝑢(𝑖+1)·sin𝛼i+1−𝑁𝑑𝑖·sin𝛼i+1−𝑄𝑢(𝑖+1)·cos𝛼𝑖=0
𝑁𝑑𝑖·cos𝛼𝑖+𝑄𝑑𝑖·sin𝛼i−𝑁𝑢(𝑖+1)·cos𝛼𝑖+1−𝑄𝑢(𝑖+1)·sin𝛼i+1−𝜆ag=0
{ 𝛼3=𝛼12=𝛼21=0
(𝑖=1,2,……,24)
UsingoptimizationsoftwareLingotoruntheprogram,wegotAsetofoptimalvalueα(usinganglesystem)(SeeAppendix-Annex1)
𝑖
𝑓`(x)=tan𝛼𝑖,(𝑖=1,2,……,24)
Establishtwo-dimensionalrectangularcoordinatesystemonthebasisofsetingthetopofthevertebtraascoordinateoriginandthethedirectionofverticaldownwardasx-axis’positivedirection.
Leteachvertebralengthis25,sowecangettheobjectivefunction’sderivativedistributionat25points.(SeeAppendix-Annex2)
fitting
WecanuseFourierfunctionbysoftware :
methodtoobtaintheobjectivefunction’scurveofderivative
𝟖
f(x)=∑𝐚·𝐬(𝐛x+𝐜)
=
Thecoefficientamongthema,b,cis:
Thegraphicsis:
(figure2:ThederivativefunctioncurveofobjectivefunctionobtainedbyFourierfittingmethod)
Obtainedtheobjectivefunctionbyintegratingthefunction:
𝑥
F(x)=∫𝑓(𝑥)dx+C
0
(Cisaconstant)
CalculatedvalueofCbyundeterminedcoefficientmethodandthenweobtainedtheexpressionofobjectivefunctionF(x)is:
8 𝑎𝑖
𝑓(𝑥)=∑− ·cos(𝑏∗𝑥+𝑐)
𝑏𝑖 𝑖 𝑖
𝑖=1
Thevalueofcoefficientis:
Drawobjectivefunctioncurvebysoftware (ThealgorithmisintheAppendix–Annex3)
(figure3:Theobjectivefunction’scurveobtainedbyFourierfittingmethod)
Error ysis:
Sumofsquaresduetoerror、R-square、AdjustedR-square、RMSEare:SSE:0.000874
R-square:0.9974
AdjustedR-square:0.991
RMSE:0.01117
ThemoreSSEisclosetozerotheerrorissmaller,themoreR-squareiscloseto1thecurveisbetterfitting,themoreRMSSEiscloseto0,thecurveisbetterfitting.
ThusSSE>0.0001,RMSE>0.01theerrorisrelativelylarge.Theerrorrangecorrespondingtothecurveisshownbelow:
(figure5:Theobjectivefunctionandthebandedareaformedbyerrorrange)
SoweneedtofindanoptimizationschemetomakeSSE<0.0001、RMSE<0.0.
ModelOptimization
OuroptimizationpurposesistofindabetteroptimizationmethodtomakeRMSE<0.01、SSE<0.0001、AdjustedR-squaresufficientlyclose1,throughyzingandfindingrelevantinformation,wechoosesmoothingsplinefittingmethodtooptimizederivativefunctioncurve.
(ThealgorithmofisintheAppendix–Annex4)
“coefs”representativesinterpolatedpiecewisefunctioncoefficientmatrix,“breaks”representativespiecewiseintervalnodematrix,thefittingcurveimagesis:
(figure6:Thederivativefunctioncurveofobjectivefunctionfittedoutbysmoothingsplinemethod)
Its’SSE、R-square、AdjustedR-square、RMSEare:
SSE:8.409e-005
R-square:0.9997
AdjustedR-square:0.9939
RMSE:0.00917
Atthistime,thecasewhereRMSE<0.01、SSE<0.0001satisfyerrorcontrollablerangeandR2greaterthantheprevious,thefittingdegreeisbetter.(ThealgorithmisintheAppendix–Annex5)
A=sp.coefsA2=sp.breaks
WeobtainedcoefficientmatrixBcorrespondingtotheprimitivefunctionwhichthefunctionCorrespondingtothecoefficientmatrixAcorrespondingto:(ThealgorithmandmatrixBareintheAppendix–Annex6)
Sotheobjectivefunctioncanberepresentedasapiecewisepolynomialfunction,Andthe
coefficientmatrixofinterpolationpolynomialoneachpiecewiseintervalcoefs=B,piecewiseintervalnodematrixA2,numberofsegmentsis25,theorderofpolynomialis5,wedrawtheobjectivefunctionimageswithasfollows:
(figure7:Theobjectivefunction’scurveobtainedbysmoothingsplinemethod)
ComparingoptimizedModelcurvewithpreviousmodelcurve:
(figure8:previousmodelcurveandoptimizedModelcurve)
Therefore,wefinallyobtainedagraphasfollows(aftercoordinatetransformedinequalproportion):
(figure9:Theoptimalcurveincoordinatethattransformedinequalproportions)
Thefunctionexpressionisapolynomialfunctionwhichcoefficientmatrixcoefs=B,piecewiseintervalnodematrixA2,numberofsegmentsis25,theorderofpolynomialis5.
economyclass.
Ourairlinesarenowintroducinganew"slimline"seatsin
Theseatback tecurvewhichnotsuitableforthevertebramakespassengersfeeltiredand
fortable
Whileournewslimlineseatswillliberatingmorepassengerspace,andmakeyoumorecomefortable.
Forithastheoptimalseatback tecurve,andnewtypeoffillmaterial.
Theapplicationofbiomechanicsinthedesignoftheseatback te
Wesummingthetotalshear ,totalbendingmomentandtotalcompressive asthevalueof
fortatthattime.
Whilethelowestvalueof
fort
correspondingtoasetofanglewhich
canbeuniquelydeterminedbythebendingstatuswherethecomposition
of sonthevertebraissmallest.
Throughfindingoptimalsolutionandfittingthedata,wecanfindasmoothcurve.ThiscurveIsnotonlythecurveofvertebrawhenitismostcomfortable,butalsocanbeseenastheseatback tecurvethatcan
makepassengersmostcomfortable.
Appendix:
Annex1
Columns1through8
9.3841 0.2142 -8.5110 -14.9356 -17.9228 -17.2622 -13.5392 -7.8644
Columns9through16
-1.5402 4.2764
8.8241
11.9555
14.6021
19.2318
27.9011
36.2675
Columns17through24
32.1341 6.9702
-26.0330
-42.4099
-39.3301
-28.4607
-19.9661
-15.6969
Column25
-13.4032
Annex2
Columns1through8
0.0522 0.0012 -0.0473 -0.0832 -0.0999 -0.0962 -0.0754 -0.0437
Columns9through16
-0.0086 0.0238 0.0491 0.0665 0.0813 0.1073 0.1563 0.2043
Columns17through24
0.1804 0.0387 -0.1456 -0.2401 -0.2220 -0.1594 -0.1114 -0.0874
Column25
-0.0746
Annex3
>>t=1:600;
>>
gx=-((0.07859./0.02094).*cos(0.02094.*t+0.883)+(0.1386./0.01043).*cos(0.01043.*t-1.978)+(0.07079.
/0.03142).*cos(0.03142.*t+2.002)+(0.07358./0.005429).*cos(0.005429.*t+2.026)+(0.03204./0.04189).
*cos(0.04189.*t-2.539)+(0.01488./0.05236).*cos(0.05236.*t-0.4748)+(0.008279/0.06283).*cos(0.006283.*t+1.212)+(0.002986./0.0733).*cos(0.0733.*t+2.156));
>>plot(t,gx)
Annex4
>>x=0:25:600;
>>sp=spline(x,k)sp=
form:'pp'
breaks:[1x25double]coefs:[24x4double]pieces:24
order:4
dim:1
Annex
5
A=
0.0000
-0.0000
-0.0019
0.0522
0.0000
0.0000
-0.0021
0.0012
0.0000
0.0000
-0.0017
-0.0473
0.0000
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小班健康课:我会漱口
- 我劳动我健康诗歌朗诵
- 小学生文明如厕常规课件
- 2025年黄冈货运考试题目
- 妇科子宫肌瘤护理查房
- DB36∕T 2118-2024 鱼类资源监测技术规范
- DB14∕T 2813-2023 井工煤矿智能提升系统技术规范
- 心理健康培训核心内容
- 开学第一课常规教育幼儿园
- 如何设计文字导入
- 水厂易制毒管理制度
- 2025年《社会工作法规与政策》课程标准
- 2025郑州市中牟县辅警考试试卷真题
- 商场日常保洁服务方案投标文件(技术方案)
- 医院防汛救灾管理制度
- 锅炉试题及答案
- 2025年小学美术教师招聘考试必考美术学科专业知识汇编(160题)
- 《体重管理年行动》科普指南课件
- uom无人机考试试题及答案
- 误差检测优化策略-全面剖析
- 生态环保培训课件
评论
0/150
提交评论