甘肃省民勤县2022-2023学年数学八年级第二学期期末联考模拟试题含解析_第1页
甘肃省民勤县2022-2023学年数学八年级第二学期期末联考模拟试题含解析_第2页
甘肃省民勤县2022-2023学年数学八年级第二学期期末联考模拟试题含解析_第3页
甘肃省民勤县2022-2023学年数学八年级第二学期期末联考模拟试题含解析_第4页
甘肃省民勤县2022-2023学年数学八年级第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.三角形的三边长分别为①5,12,13;②9,40,41;③8,15,17;④13,84,85,其中能够构成直角三角形的有()A.1个 B.2个 C.3个 D.4个2.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是()A.∠BCA=45° B.AC=BDC.BD的长度变小 D.AC⊥BD3.点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S.当S=12时,则点P的坐标为()A.(6,2) B.(4,4) C.(2,6) D.(12,﹣4)4.计算的结果为()A.2 B.-4 C.4 D.±45.下列说法中,正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形 B.对角线相等的四边形是矩形C.有一组邻边相等的矩形是正方形 D.对角线互相垂直的四边形是菱形6.若两个相似多边形的面积之比为1∶3,则对应边的比为(

)A.1∶3 B.3∶1

C.1:

D.:17.如图,一次函数y=kx+b的图象经过点A(1,0),B(2,1),当因变量y>0时,自变量x的取值范围是()A.x>0 B.x<0 C.x>1 D.x<18.若关于的一元二次方程有两个不相等的实数根,则的取值范围是()A. B. C.且 D.且9.小明在学习了正方形之后,给同桌小文出了道题.从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD中选出两个作为补充条件,使平行四边形ABCD成为正方形(如图所示).现有下列四种选法,你认为其中错误的是()A.①② B.②④ C.①③ D.②③10.如图,已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,则A1的坐标是()A.(﹣1,2) B.(2,﹣1) C.(1,﹣2) D.(﹣2,1)11.已知平面上四点,,,,一次函数的图象将四边形ABCD分成面积相等的两部分,则A.2 B. C.5 D.612.为了解某学校七至九年级学生每天的体育锻炼时间,下列抽样调查的样本代表性较好的是()A.选择七年级一个班进行调查B.选择八年级全体学生进行调查C.选择全校七至九年级学号是5的整数倍的学生进行调查D.对九年级每个班按5%的比例用抽签的方法确定调查者二、填空题(每题4分,共24分)13.如图,矩形ABCD中,,,把矩形ABCD绕点A顺时针旋转,当点D落在射线CB上的点P处时,那么线段DP的长度等于_________.14.如图,等腰三角形中,,是底边上的高,则AD=________________.15.一次函数的图像经过点,且的值随值的増大而增大,请你写出一个符合所有条件的点的坐标__________.16.已知关于x的方程有两个不相等的实数根,则a的取值范围是_____________.17.将函数的图象向上平移2个单位,所得的函数图象的解析为________.18.若,则y_______(填“是”或“不是”)x的函数.三、解答题(共78分)19.(8分)已知三角形纸片ABC,其中∠C=90°,AB=10,BC=6,点E,F分别是AC,AB上的点,连接EF.(1)如图1,若将纸片ABC沿EF折叠,折叠后点A刚好落在AB边上点D处,且S△ADE=S四边形BCED,求ED的长;(2)如图2,若将纸片ABC沿EF折叠,折叠后点A刚好落在BC边上点M处,且EM∥AB.①试判断四边形AEMF的形状,并说明理由;②求折痕EF的长.20.(8分)如图,抛物线y=ax2+bx﹣3过A(1,0),B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点.(1)求直线AD及抛物线的解析式;(2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长?(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P,Q,D,R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.21.(8分)如图,在四边形ABCD中,∠ABC=90°,E、F分别是AC、CD的中点,AC=8,AD=6,∠BEF=90°,求BF的长.22.(10分)已知,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,且AE=CF,连接AC,EF.(1)如图①,求证:EF//AC;(2)如图②,EF与边CD交于点G,连接BG,BE,①求证:△BAE≌△BCG;②若BE=EG=4,求△BAE的面积.23.(10分)星马公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试成果认定,三项得分满分都为100分,三项的分数分别为的比例计入每人的最后总分,有4位应聘者的得分如下所示:项目得分应聘者专业知识英语水平参加社会实践与社团活动等A858590B858570C809070D809050(1)写出4位应聘者的总分;(2)已知这4人专业知识、英语水平、参加社会实践与社团活动等三项的得分对应的方差分别为12.5、6.25、200,你对应聘者有何建议?24.(10分)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式,即,是否可以因式分解呢?当然可以,而且也很简单。如;.请你仿照上述方法分解因式:(1)(2)25.(12分)综合与实践如图,为等腰直角三角形,,点为斜边的中点,是直角三角形,.保持不动,将沿射线向左平移,平移过程中点始终在射线上,且保持直线于点,直线于点.(1)如图1,当点与点重合时,与的数量关系是__________.(2)如图2,当点在线段上时,猜想与有怎样的数量关系与位置关系,并对你的猜想结果给予证明;(3)如图3,当点在的延长线上时,连接,若,则的长为__________.26.如图,在一次夏令营活动中,小明从营地A出发,沿北偏东60°方向走了m到达点B,然后再沿北偏西30°方向走了50m到达目的地C。(1)求A、C两点之间的距离;(2)确定目的地C在营地A的北偏东多少度方向。

参考答案一、选择题(每题4分,共48分)1、D【解析】

试题解析:①、∵52+122=169=132,∴能构成直角三角形,故本小题正确;②、92+402=1681=412=169,∴能构成直角三角形,故本小题正确;③、82+152=289=172,∴能构成直角三角形,故本小题正确;④、∵132+842=852,∴能构成直角三角形,故本小题正确.故选D.2、B【解析】

根据矩形的性质即可判断;【详解】解:∵四边形ABCD是平行四边形,又∵AB⊥BC,∴∠ABC=90°,∴四边形ABCD是矩形,∴AC=BD.故选B.【点睛】本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3、B【解析】

根据题意画出图形,根据三角形的面积公式即可得出S关于y的函数关系式,由函数关系式及点P在第一象限即可得出x的值,即可解答【详解】△OPA的面积为S==12,所以,y=4,由x+y=8,得x=4,所以,P(4,4),选B。【点睛】此题考查坐标与图形性质,解题关键在于得出x的值4、C【解析】

根据算术平方根的定义进行计算即可.【详解】解:=4,故选C.【点睛】本题主要考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.5、C【解析】

根据平行四边形、矩形、正方形、菱形的判定方法以及定义即可作出判断.【详解】解:一组对边平行且相等的四边形是平行四边形,故A错误;对角线相等的平行四边形是矩形,故B错误;有一组邻边相等的矩形是正方形,故C正确;对角线互相垂直平分的四边形是菱形或对角线互相垂直的平行四边形是菱形,故D错误;故本题答案应为:C.【点睛】平行四边形、矩形、正方形、菱形的判定方法以及定义是本题的考点,熟练掌握其判定方法是解题的关键.6、C【解析】

直接根据相似多边形的性质进行解答即可.【详解】∵两个相似多边形的面积之比为1:3,∴这两个多边形对应边的比为=1:.故选C.【点睛】本题考查的是相似多边形的性质,即相似多边形面积的比等于相似比的平方.7、C【解析】

由一次函数图象与x轴的交点坐标结合函数图象,即可得出:当x>1时,y>1,此题得解.【详解】解:观察函数图象,可知:当x>1时,y>1.故选:C.【点睛】本题考查了一次函数图象上点的坐标特征、一次函数的图象以及一次函数的性质,观察函数图象,利用数形结合解决问题是解题的关键.8、D【解析】

根据一元二次方程有两个不相等的实数根,可得进而计算k的范围即可.【详解】解:根据一元二次方程有两个不相等的实数根可得计算可得又根据要使方程为一元二次方程,则必须所以可得:且故选D.【点睛】本题主要考查根与系数的关系,根据一元二次方程有两个不相等的实根可得,;有两个相等的实根则,在实数范围内无根,则.9、D【解析】

利用矩形、菱形、正方形之间的关系与区别,结合正方形的判定方法分别判断得出即可.【详解】A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意.故选D.【点睛】此题主要考查了正方形的判定以及矩形、菱形的判定方法,正确掌握正方形的判定方法是解题关键.10、A【解析】

根据点(x,y)绕原点逆时针旋转90°得到的坐标为(-y,x)解答即可.【详解】已知A(2,1),现将A点绕原点O逆时针旋转90°得到A1,所以A1的坐标为(﹣1,2).故选A.【点睛】本题考查的是旋转的性质,熟练掌握坐标的旋转是解题的关键.11、B【解析】

根据题意四边形ABCD是矩形,直线只要经过矩形对角线的交点,即可得到k的值.【详解】,,,,,,四边形ABCD是平行四边形,,四边形ABCD是矩形,对角线AC、BD的交点坐标为,直线经过点时,直线将四边形ABCD的面积分成相等的两部分,,.故选:B.【点睛】本题考查矩形的判定和性质、一次函数图象上点的坐标特征等知识,掌握中心对称图形的性质是解决问题的关键.12、C【解析】

直接利用抽样调查必须具有代表性,进而分析得出答案.【详解】抽样调查的样本代表性较好的是:选择全校七至九年级学号是5的整数倍的学生进行调查,故选C.【点睛】此题主要考查了抽样调查的可靠性,正确把握抽样调查的意义是解题关键.二、填空题(每题4分,共24分)13、【解析】【分析】画图,分两种情况:点P在B的右侧或左侧.根据旋转和矩形性质,运用勾股定理,分别求出BP和PC,便可求出PD.【详解】(1)如图,当P在B的右侧时,由旋转和矩形性质得:AP=AD=5,AB=CD=3,在直角三角形ABP中,BP=,所以,PC=BC-BP=5-4=1,在直角三角形PDC中,PD=,(2)如图,当点P在B的左侧时,由旋转和矩形性质得:AP=AD=5,AB=CD=3,在直角三角形APB中,PB=,所以,PC=BC+PB=5+4=9,在在直角三角形PDC中,PD=,所以,PD的长度为故答案为【点睛】本题考核知识点:矩形,旋转,勾股定理.解题关键点:由旋转和矩形性质得到边边相等,由勾股定理求边长.14、1【解析】

先根据等腰三角形的性质求出BD的长,再根据勾股定理解答即可.【详解】根据等腰三角形的三线合一可得:BD=BC=×6=3cm,在直角△ABD中,由勾股定理得:AB2=BD2+AD2,所以,AD=1cm.故答案为1.【点睛】本题考查了等腰三角形的性质和勾股定理.关键要熟知等腰三角形的三线合一可得.15、(1,2)(答案不唯一).【解析】

由于y的值随x值的增大而增大,根据一次函数的增减性得出k>0,可令k=1,那么y=x+1,然后写出点P的坐标即可.【详解】解:由题意可知,k>0即可,

可令k=1,那么一次函数y=kx+1即为y=x+1,

当x=1时,y=2,

所以点P的坐标可以是(1,2).

故答案为(1,2)(答案不唯一).【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,得出k>0是解题的关键.16、且【解析】

由题意可知方程根的判别式△>0,于是可得关于a的不等式,解不等式即可求出a的范围,再结合二次项系数不为0即得答案.【详解】解:根据题意,得:,且,解得:且.故答案为:且.【点睛】本题考查了一元二次方程的根的判别式和一元一次不等式的解法,属于基本题型,熟练掌握一元二次方程根的判别式和方程根的个数之间的关系是解题的关键.17、【解析】

根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为.

故答案为:.【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.18、不是【解析】

根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应的关系,据此即可判断.【详解】对于x的值,y的对应值不唯一,故不是函数,故答案为:不是.【点睛】本题是对函数定义的考查,熟练掌握函数的定义是解决本题的关键.三、解答题(共78分)19、(1)DE=1;(2)①四边形AEMF是菱形,证明见解析;②【解析】

(1)先利用折叠的性质得到EF⊥AB,△AEF≌△DEF,则S△AEF=S△DEF,则易得S△ABC=1S△AEF,再证明Rt△AEF∽Rt△ABC,然后根据相似三角形的性质得到两个三角形面积比和AB,AE的关系,再利用勾股定理求出AB即可得到AE的长;(2)①根据四边相等的四边形是菱形证明即可;②设AE=x,则EM=x,CE=8−x,先证明△CME∽△CBA得到关于x的比例式,解出x后计算出CM的值,再利用勾股定理计算出AM,然后根据菱形的面积公式计算EF.【详解】(1)∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴EF⊥AB,△AEF≌△DEF,∴S△AEF=S△DEF,∵S△ADE=S四边形BCDE,∴S△ABC=4S△AEF,在Rt△ABC中,∵∠ACB=90,AB=10,BC=6,∴AC=8,∵∠EAF=∠BAC,∴Rt△AEF∽Rt△ABC,∴,即,∴AE=1(负值舍去),由折叠知,DE=AE=1.(2)①如图2中,∵△ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵ME∥AB,∴∠AFE=∠FEM∴∠MFE=∠FEM,∴ME=MF,∴AE=EM=MF=AF,∴四边形AEMF为菱形.②设AE=x,则EM=x,CE=8−x,∵四边形AEMF为菱形,∴EM∥AB,∴△CME∽△CBA,∴,即,解得x=,CM=,在Rt△ACM中,AM=,∵S菱形AEMF=EF•AM=AE•CM,∴EF=2×.【点睛】本题考查了相似形的综合题:熟练掌握折叠的性质和菱形的判定与性质;灵活构建相似三角形,运用勾股定理或相似比表示线段之间的关系和计算线段的长.解决此类题目时要各个击破.本题有一定难度,证明三角形相似和运用勾股定理得出方程是解决问题的关键,属于中考常考题型.20、(1)y=x2+2x﹣1;(2)当m=-时,PQ最长,最大值为;(1)R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).【解析】

(1)根据待定系数法,可得抛物线的解析式;根据自变量与函数值的对应关系,可得D点坐标,再根据待定系数法,可得直线的解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;(1)根据PQ的长是正整数,可得PQ,根据平行四边形的性质,对边平行且相等,可得DR的长,根据点的坐标表示方法,可得答案【详解】解:(1)将A(1,0),B(﹣1,0)代入y=ax2+bx﹣1得:解得:∴抛物线的解析式为:y=x2+2x﹣1,当x=﹣2时,y=(﹣2)2﹣4﹣1=﹣1,∴D(﹣2,﹣1),设直线AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣1)代入得:解得:∴直线AD的解析式为y=x﹣1;因此直线AD的解析式为y=x﹣1,抛物线的解析式为:y=x2+2x﹣1.(2)∵点P在直线AD上,Q抛物线上,P(m,n),∴n=m﹣1Q(m,m2+2m﹣1)∴PQ的长l=(m﹣1)﹣(m2+2m﹣1)=﹣m2﹣m+2(﹣2≤m≤1)∴当m=时,PQ的长l最大=﹣()2﹣()+2=.答:线段PQ的长度l与m的关系式为:l=﹣m2﹣m+2(﹣2≤m≤1)当m=时,PQ最长,最大值为.(1)①若PQ为平行四边形的一边,则R一定在直线x=﹣2上,如图:∵PQ的长为0<PQ≤的整数,∴PQ=1或PQ=2,当PQ=1时,则DR=1,此时,在点D上方有R1(﹣2,﹣2),在点D下方有R2(﹣2,﹣4);当PQ=2时,则DR=2,此时,在点D上方有R1(﹣2,﹣1),在点D下方有R4(﹣2,﹣5);②若PQ为平行四边形的一条对角线,则PQ与DR互相平分,此时R与点C重合,即R5(0,﹣1)综上所述,符合条件的点R有:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).答:符合条件的点R共有5个,即:R1(﹣2,﹣2),R2(﹣2,﹣4),R1(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣1).【点睛】此题考查一元二次方程-用待定系数法求解析式,二次函数的性质,平行四边形的性质,解题关键在于把已知点代入解析式21、2【解析】

根据三角形中位线定理和直角三角形斜边上的中线推知BE=4,EF=1,再由勾股定理计算BF的长度即可.【详解】∵E、F分别是AC、CD的中点,∴EF=AD,∵AD=6,∴EF=1.∵∠ABC=90°,E是CA的中点,∴BE=AC=4,∵∠BEF=90°,∴BF===2.【点睛】本题考查了直角三角形斜边上的中线,根据三角形中位线定理和直角三角形斜边上的中线推知△BEF两直角边的长是解题的关键.22、(1)见解析;(1)①见解析;②△BAE的面积为1.【解析】

(1)利用平行四边形的判定及其性质定理即可解决问题;(1)①根据SAS可以证明两三角形全等;②先根据等腰直角△DEG计算DE的长,设AE=a,表示正方形的边长,根据勾股定理列式,可得+a=4,最后根据三角形面积公式,整体代入可得结论.【详解】(1)证明:∵正方形ABCD∴AE//CF,∵AE=CF∴AEFC是平行四边形∴EF//AC.(1)①如图,∵四边形ABCD是正方形,且EF∥AC,∴∠DEG=∠DAC=45°,∠DGE=∠DCA=45°;∵AD∥BF,∴∠CFG=∠DEG=45°,∵∠CGF=∠DGE=45°,∴∠CGF=∠CFG,∴CG=CF;∵AE=CF,∴AE=CG;在△ABE与△CBG中,∵AE=CG,∠BAE=∠BCG,AB=BC∴△ABE≌CBG(SAS);②由①知△DEG是等腰直角三角形,∵EG=4,∴DE=,设AE=a,则AB=AD=a+,Rt△ABE中,由勾股定理得:AB1+AE1=BE1,∴(a+)1+a1=41,∴a1+a=4,∴S△ABE=AB•AE=a(a+)=(a1+a)=×4=1.【点睛】本题是四边形的综合题,本题难度适中,考查了正方形的性质、全等三角形的判定及其应用问题;解题的关键是熟练掌握正方形的性质,结合等腰直角三角形的性质来解决问题;并利用未知数结合整体代入解决问题.23、(1)A总分为86分,B总分为82分,C总分为81分,D总分为82分;(2)见详解【解析】

(1)求四位应聘者总分只需将各部分分数按比例相加即可;

(2)根据方差的意义分析即可.【详解】解:(1)应聘者A总分为85×50%+85×30%+90×20%=86分;

应聘者B总分为85×50%+85×30%+70×20%=82分;

应聘者C总分为80×50%+90×30%+70×20%=81分;

应聘者D总分为90×50%+90×30%+50×20%=82分;(2)对于应聘者的专业知识、英语水平的差距不大,但参加社会实践与社团活动等方面的差距较大,影响学生的最后成绩,将影响学生就业.学生不仅注重自己的文化知识的学习,更应注重社会实践与社团活动的开展,从而促进学生综合素质的提升.【点睛】本题考查方差的意义:一组数据中各数据与这组数据的平均数的差的平方的平均数叫做这组数据的方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.24、①;②【解析】

(1)逆用乘法公式(x+a)

(x+b)=x2+(a+b)x+ab即可.(2)逆用乘法公式(x+a)

(x+b)=x2+(a+b)x+ab即可.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论