湖北省黄石市白沙片区2022-2023学年数学八下期末学业水平测试模拟试题含解析_第1页
湖北省黄石市白沙片区2022-2023学年数学八下期末学业水平测试模拟试题含解析_第2页
湖北省黄石市白沙片区2022-2023学年数学八下期末学业水平测试模拟试题含解析_第3页
湖北省黄石市白沙片区2022-2023学年数学八下期末学业水平测试模拟试题含解析_第4页
湖北省黄石市白沙片区2022-2023学年数学八下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列因式分解正确的是()A.x3﹣x=x(x2﹣1) B.x2+y2=(x+y)(x﹣y)C.(a+4)(a﹣4)=a2﹣16 D.m2+4m+4=(m+2)22.不等式组中的两个不等式的解集在数轴上表示为()A. B.C. D.3.若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形 B.八边形 C.九边形 D.十边形4.不等式组有3个整数解,则的取值范围是()A. B. C. D.5.如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC6.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行线间的距离都是1,正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积为()A. B.5 C.3 D.7.下列调查中,适宜采用普查方式的是()A.调查一批新型节能灯泡的使用寿命B.调查常熟市中小学生的课外阅读时间C.对全市中学生观看电影《厉害了,我的国》情况的调查D.对卫星“张衡一号”的零部件质量情况的调查8.已知点和点在反比例函数的图象上,若,则()A. B.C. D.9.将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为()A.y=﹣3x+2 B.y=﹣3x﹣2 C.y=﹣3(x+2) D.y=﹣3(x﹣2)10.如图,有一个矩形纸片ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF的长为()A.5 B.6 C.7 D.8二、填空题(每小题3分,共24分)11.在□ABCD中,一角的平分线把一条边分成3cm和4cm两部分,则□ABCD的周长为__________.12.因式分解:___.13.在平面直角坐标系xOy中,直线与x轴的交点为A,与y轴的交点为B,且,则k的值为_____________.14.某楼梯如图所示,欲在楼梯上铺设红色地毯,已知这种地毯每平方米售价为30元,楼梯宽为2m,则购买这种地毯至少需要_____元.15.如图,在△ABC中,∠B=32°,∠BAC的平分线AD交BC于点D,若DE垂直平分AB,则∠C的度数为_____.16.如图,将三个边长都为a的正方形一个顶点重合放置,则∠1+∠2+∠3=_______.17.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到点D,则橡皮筋被拉长了_____cm.18.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为________.三、解答题(共66分)19.(10分)直线过点,直线过点,求不等式的解集.20.(6分)解下列方程:(1)=.(2)=1-.21.(6分)某养猪场要出售200只生猪,现在市场上生猪的价格为11元/,为了估计这200只生猪能卖多少钱,该养猪场从中随机抽取5只,每只猪的重量(单位:)如下:76,71,72,86,1.(1)计算这5只生猪的平均重量;(2)估计这200只生猪能卖多少钱?22.(8分)五一期间,甲、乙两人分别骑自行车和摩托车从地出发前往地郊游,并以各自的速度匀速行驶,到达目的地停止,途中乙休息了一段时间,然后又继续赶路.甲、乙两人各自行驶的路程与所用时间之间的函数图象如图所示.(1)甲骑自行车的速度是_____.(2)求乙休息后所行的路程与之间的函数关系式,并写出自变量的取值范围.(3)为了保证及时联络,甲、乙两人在第一次相遇时约定此后两人之间的路程不超过.甲、乙两人是否符合约定,并说明理由.23.(8分)如图,一次函数y1=2x+2的图象与反比例函数y2=(k为常数,且k≠0)的图象都经过点A(m,4),求点A的坐标及反比例函数的表达式.24.(8分)如图,在△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线交AB于点D,交AC于点E.求证:AE=2CE.25.(10分)端午节前夕,小东妈妈准备购买若干个粽子和咸鸭蛋(每个棕子的价格相同,每个咸鸭蛋的价格相同).已知某超市粽子的价格比咸鸭蛋的价格贵1.8元,小东妈妈发现,花30元购买粽子的个数与花12元购买的咸鸭蛋个数相同.(1)求该超市粽子与咸鸭蛋的价格各是多少元?(2)小东妈妈计划购买粽子与咸鸭蛋共18个,她的一张购物卡上还有余额40元,若只用这张购物卡,她最多能购买粽子多少个?26.(10分)如图,已知直线l和l外一点P,用尺规作l的垂线,使它经过点P.(保留作图痕迹,不写作法)

参考答案一、选择题(每小题3分,共30分)1、D【解析】

逐项分解因式,即可作出判断.【详解】A、原式=x(x2﹣1)=x(x+1)(x﹣1),不符合题意;B、原式不能分解,不符合题意;C、原式不是分解因式,不符合题意;D、原式=(m+2)2,符合题意,故选:D.【点睛】此题主要考查了提公因式法,以及公式法在因式分解中的应用,要熟练掌握.2、C【解析】

分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【详解】不等式组,解得:,解得:,∴不等式组的解集为:,故选:C.【点睛】本题考查了不等式组的解法和在数轴上表示不等式组的解集.需要注意的是:如果是表示大于或小于号的点要用空心圆圈,如果是表示大于等于或小于等于号的点要用实心圆点.3、C【解析】

根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】360÷40=9,即这个多边形的边数是9,故选C.【点睛】本题考查多边形的内角和与外角和之间的关系,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.4、B【解析】分析:解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.详解:不等式组,由﹣x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣1.故选B.点睛:本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.5、B【解析】分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.详解:添加的条件是AC=BD.理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.故选B.点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.6、B【解析】

过D点作直线EF与平行线垂直,与l2交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=2,DF=2.根据勾股定理可求CD2得正方形的面积.【详解】作EF⊥l2,交l2于E点,交l4于F点.∵l2∥l2∥l3∥l4,EF⊥l2,∴EF⊥l2,EF⊥l4,即∠AED=∠DFC=90°.∵ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.在△ADE和△DCF中∴△ADE≌△DCF(AAS),∴CF=DE=2.∵DF=2,∴CD2=22+22=3,即正方形ABCD的面积为3.故选B.【点睛】此题主要考查了正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.7、D【解析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A.调查一批新型节能灯泡的使用寿命适合抽样调查;B.调查盐城市中小学生的课外阅读时间适合抽样调查;C.对全市中学生观看电影《流浪地球》情况的调查适合抽样调查;D.对量子通信卫星的零部件质量情况的调查必须进行全面调查,故选D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8、D【解析】

根据反比例函数的图像与性质逐项分析即可.【详解】∵k<0,∴反比例函数的图像在二、四象限.A.当点在第二象限,点在第四象限,且时,x1+x2>0,y1+y2>0,此时,故A错误;B.当点和点在第四象限时,x1+x2>0,y1+y2<0,此时,故B错误;C.当点和点在第四象限时,x1·x2>0,x1-x2<0,y1-y2<0,此时,故C错误;D.∵A、B、C均错误,∴D正确.故选D.【点睛】本题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.9、A【解析】

根据平移规律“上加下减”,即可找出平移后的函数关系式.【详解】解:根据平移的规律可知:平移后的函数关系式为y=﹣3x+1.故选:A.【点睛】本题考查了一次函数图象与几何变换,运用平移规律“左加右减,上加下减”是解题的关键.10、B【解析】

根据矩形的性质得到CD=AB=8,根据勾股定理求出CF,根据勾股定理列方程计算即可.【详解】∵四边形ABCD是矩形,∴CD=AB=8,∴DE=CD﹣CE=5,由折叠的性质可知,EF=DE=5,AF=CD=BC,在Rt△ECF中,CF==4,由勾股定理得,AF2=AB2+BF2,即(BF+4)2=82+BF2,解得,BF=6,故选:B.【点睛】本题考查的是翻转变换的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、填空题(每小题3分,共24分)11、2cm或22cm【解析】如图,设∠A的平分线交BC于E点,∵AD∥BC,∴∠BEA=∠DAE,又∵∠BAE=∠DAE,∴∠BEA=∠BAE∴AB=BE.∴BC=3+4=1.①当BE=4时,AB=BE=4,□ABCD的周长=2×(AB+BC)=2×(4+1)=22;②当BE=3时,AB=BE=3,□ABCD的周长=2×(AB+BC)=2×(3+1)=2.所以□ABCD的周长为22cm或2cm.故答案为:22cm或2cm.点睛:本题考查了平行四边形的性质以及等腰三角形的性质与判定.此题难度适中,注意掌握分类讨论思想与数形结合思想的应用.12、2a(a-2)【解析】

13、【解析】

先根据解析式确定点A、B的坐标,再根据三角形的面积公式计算得出答案.【详解】令中y=0得x=-,令x=0得y=2,∴点A(-,0),点B(0,2),∴OA=,OB=2,∵,∴,解得k=,故答案为:.【点睛】此题考查一次函数图象与坐标轴的交点,一次函数与几何图形面积,正确理解OA、OB的长度是解题的关键.14、1【解析】解:已知直角三角形的一条直角边是3m,斜边是5m,根据勾股定理得到:水平的直角边是4m,地毯水平的部分的和是水平边的长,竖直的部分的和是竖直边的长,则购买这种地毯的长是3m+4m=7m,则面积是14m2,价格是14×30=1元.故答案为1.15、84°.【解析】

根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质得到∠DAB=∠B=32°,根据角平分线的定义、三角形内角和定理计算即可.【详解】解:∵DE垂直平分AB,∴DA=DB,∴∠DAB=∠B=32°,∵AD是∠BAC的平分线,∴∠CAD=∠DAB=32°,∴∠C=180°−32°×3=84°,故答案为84°.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16、【解析】

利用重合部分的角相等和等角的余角相等,逐步判定∠2=∠COB

,即可完成解答。【详解】解:如图∵都是正方形∴∠FOC=∠EOB=∠DOA=又∵∠2+∠EOC=∠BOC+∠EOC=∴∠2=∠BOC∴∠1+∠2+∠3=∠DOA=故答案为。【点睛】本题主要考查了正方形的性质以及重合部分的角相等和等角的余角相等的知识,其中确定∠2=∠BOC是解题的关键。17、2.【解析】

根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【详解】Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故答案为2.【点睛】此题主要考查了等腰三角形的性质以及勾股定理的应用.18、1【解析】

观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知,设大正方形的边长为c,大正方形的面积为13,即:,再利用勾股定理得可以得出直角三角形的面积,进而求出答案.【详解】解:如图所示:∵,∴,∵,,∴,∴小正方体的面积=大正方形的面积-4个直角三角形的面积=,故答案为:1.【点睛】此题主要考查了勾股定理的应用,熟练应用勾股定理是解题关键.三、解答题(共66分)19、【解析】

将代入,可解得k的值,将代入,可解得m的值,再将k和m的值代入不等式,解不等式即可【详解】解:将代入得:,解得:k=1;将代入得:,解得:;∴,则可得解得故答案为:【点睛】本题考查待定系数法求一次函数的解析式以及不等式的解法,,比较简单,应熟练掌握20、(1)无解;(2)x=-1.【解析】

(1)先去分母,再解一元一次方程,最后检验即可得答案;(2)方程两边同时乘以(2x-1)可得一元一次方程,解方程即可求出x的值,再检验即可得答案.【详解】(1)=两边同时乘以(x-1)得:3x+2=5,解得:x=1,检验:当x=1时,x-1=0,∴x=1不是原方程的解,∴原方程无解.(2)=1-两边同时乘以(2x-1)得:x=2x-1+2,解得:x=-1.检验:当x=-1时,2x-1=-3≠0,∴x=-1是原方程的解.【点睛】本题考查解分式方程,解分式方程的基本思路是把分式方程转化成整式方程,其具体做法是“去分母”,即方程两边同时乘以最简公分母.熟练掌握分式方程的解法是解题关键.21、(1)78.4(千克);(2)172480(元).【解析】

(1)根据平均数的计算可得这5只生猪的平均重量;(2)根据用样本估计总体的思想可估计这200只生猪每只生猪的平均重量,由(1)中的平均数可得.【详解】解:(1)这5只生猪的平均重量为千克;(2)根据用样本估计总体的思想可估计这200只生猪每只生猪的平均重量约为千克;

根据题意,生猪的价格为11元,

故这200只生猪能卖元.【点睛】本题主要考查的是通过样本估计总体.统计的思想就是用样本的信息来估计总体的信息.22、(1)0.25km/min;(2)(50≤x≤1);(3)甲、乙两人符合约定.【解析】

(1)由图像可知,甲没有休息,匀速行驶,到终点时,行驶了30km,用了120min,即可求得其速度;(2)首先根据图像可判定当甲走80min时,距A地20km,两人相遇,然后设乙休息后所行的路程y与x之间的函数关系为y=kx+b(k≠0),根据图像可得其经过(50,10)和(80,20)两点,列出二元一次方程组,解得即可,根据函数解析式,即可得出乙所用的时间,即得出自变量x的取值范围;(3)根据图像信息,结合(1)和(2)的结论,判定当x=50,和x=1时,甲乙两人行驶的距离,判定两人距离差即可看是否符合约定.【详解】解:(1)0.25km/min;由图像可知,甲没有休息,匀速行驶,到终点时,行驶了30km,用了120min,其速度为30÷120=0.25km/min;(2)当甲走80min时,距A地20km,两人相遇.设乙休息后所行的路程y与x之间的函数关系为y=kx+b(k≠0),因为图像经过(50,10)和(80,20)两点,由题意,得,解得:,所以y与x之间的函数关系式为.当y=30时,x=1.所以自变量x的取值范围为50≤x≤1.(3)当x=50时,甲走了12.5km,乙走了10km,12.5-10=2.5<3,符合约定.当x=1时,甲走了27.5km,乙走了30km,30-27.5=2.5<3,符合约定.所以甲、乙两人符合约定.【点睛】此题主要考查利用函数图像获取信息进行求解,理解题意,熟练运用,即可解题.23、A的坐标是(1,4),y2=.【解析】

把y=4代入y1=2x+2可求得A的横坐标,则A的坐标即可确定,再利用待定系数法求得反比例函数的解析式.【详解】把y=4代入y=2x+2,得2x+2=4,解得:x=1,则A的坐标是(1,4).把(1,4)代入y2=得:k=1×4=4,则反比例函数的解析式是:y2=.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是熟知待定系数法的运用.24、见解析【解析】

由DE为垂直平分线可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论