江苏省扬州市宝应县2022-2023学年数学八下期末达标测试试题含解析_第1页
江苏省扬州市宝应县2022-2023学年数学八下期末达标测试试题含解析_第2页
江苏省扬州市宝应县2022-2023学年数学八下期末达标测试试题含解析_第3页
江苏省扬州市宝应县2022-2023学年数学八下期末达标测试试题含解析_第4页
江苏省扬州市宝应县2022-2023学年数学八下期末达标测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.二次根式中,字母的取值范围是()A. B. C. D.2.如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B.已知小颖的眼睛D离地面的高度CD=1.5m,她离镜子的水平距离CE=0.5m,镜子E离旗杆的底部A处的距离AE=2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A.4.5m B.4.8m C.5.5m D.6m3.下列各组数据中的三个数,可作为三边长构成直角三角形的是()A.1、2、3B.C.D.4.要比较两名同学共六次数学测试中谁的成绩比较稳定,应选用的统计量为()A.中位数B.方差C.平均数D.众数5.以下说法正确的是()A.在367人中至少有两个人的生日相同;B.一次摸奖活动的中奖率是l%,那么摸100次奖必然会中一次奖;C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件;D.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是6.若分式的值为0,则x的值为()A.0 B.-1 C.1 D.27.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形8.在平面直角坐标系中,点与点关于原点对称,则的值为()A. B. C.1 D.39.下列点在直线上的是()A. B. C. D.10.下列四个数中,是无理数的是()A. B. C. D.二、填空题(每小题3分,共24分)11.菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.12.计算:﹣=_____.13.如图,在的边长为1的小正方形组成的网格中,格点上有四个点,若要求连接两个点所成线段的长度大于3且小于4,则可以连接__________________.(写出一个答案即可)14.若关于的一元一次不等式组所有整数解的和为-9,且关于的分式方程有整数解,则符合条件的所有整数为__________.15.若八个数据x1,x2,x3,……x8,的平均数为8,方差为1,增加一个数据8后所得的九个数据x1,x2,x3,…x8;8的平均数________8,方差为S2________1.(填“>”、“=”、“<”)16.已知关于x的不等式3x-m+1>0的最小整数解为2,则实数m的取值范围是___________.17.若正比例函数的图象过点和点,当时,,则的取值范围为__________.18.已知关于的方程会产生增根,则__________.三、解答题(共66分)19.(10分)如图,四边形ABCD是平行四边形,对角线AC,BD相交于点O,且∠1=∠1.求证:四边形ABCD是矩形.20.(6分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.21.(6分)如图,已知菱形ABCD的对角线AC、BD交于点O,DB=2,AC=4,求菱形的周长.22.(8分)王老师从学校出发,到距学校的某商场去给学生买奖品,他先步行了后,换骑上了共享单车,到达商场时,全程总共刚好花了.已知王老师骑共享单车的平均速度是步行速度的3倍(转换出行方式时,所需时间忽略不计).(1)求王老师步行和骑共享单车的平均速度分别为多少?(2)买完奖品后,王老师原路返回,为按时上班,路上所花时间最多只剩10分钟,若王老师仍采取先步行,后换骑共享单车的方式返回,问:他最多可步行多少米?23.(8分)如图,边长为1的正方形组成的网格中,的顶点均在格点上,点、的坐标分是,.(1)的面积为______;(2)点在轴上,当的值最小时,在图中画出点,并求出的最小值.24.(8分)如图,已知带孔的长方形零件尺寸(单位:),求两孔中心的距离.25.(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?26.(10分)计算:(1);(2);(3)

参考答案一、选择题(每小题3分,共30分)1、D【解析】

根据被开方数是非负数列式求解即可.【详解】由题意得1-3a≥0,∴.故选D.【点睛】本题考查了二次根式的定义,形如的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题的关键.2、D【解析】

根据题意得出△ABE∽△CDE,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE=2m,CE=0.5m,DC=1.5m,∵△ABC∽△EDC,∴DCAB即1.5AB解得:AB=6,故选:D.【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.3、C【解析】试题解析:A、∵12+22=5≠32,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;B、∵(32)2+(42)2≠(52)2

,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;C、∵()2+()2=3=()2,∴以这三个数为长度的线段,能构成直角三角形,故选项正确;D、∵()2+()2=7≠()2,∴以这三个数为长度的线段不能构成直角三角形,故选项错误.故选C.【点睛】本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.4、B【解析】分析:方差是用来衡量一组数据波动大小的量,中位数、众数、平均数是反映一组数据的集中程度详解:由于方差反映数据的波动情况,所以要比较两名同学在四次数学测试中谁的成绩比较稳定,应选用的统计量是方差.故选B.点睛:本题考查了统计量的选取问题,熟练掌握各统计量的特征是解答本题的关键.中位数反映一组数据的中等水平,众数反映一组数据的多数水平,平均数反映一组数据的平均水平,方差反映一组数据的稳定程度,方差越大越不稳定,方差越小越稳定.5、A【解析】

解:B.摸奖活动中奖是一个随机事件,因此,摸100次奖是否中奖也是随机事件;C.一副扑克牌中,随意抽取一张是红桃K,这是随机事件;D.一个不透明的袋中装有3个红球,5个白球,任意摸出一个球是红球的概率是故选A.【点睛】本题考查随机事件.6、B【解析】

解:依题意得,x+1=2,解得x=-1.当x=-1时,分母x+2≠2,即x=-1符合题意.故选B.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.7、D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.8、C【解析】

直接利用关于原点对称点的性质得出a,b的值,进而得出答案【详解】解:点与点关于原点对称,,,.故选:.【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.9、C【解析】

将四个选项中的点分别代入解析式,成立者即为函数图象上的点.【详解】解:将x=2代入y=-x+5得,y=3,不符合题意;将x=3代入y=-x+5得,y=2,不符合题意;将x=4代入y=-x+5得,y=1,符合题意;将x=1代入y=-x+5得,y=4,不符合题意;故选C.【点睛】本题考查了一次函数图象上点的坐标特征,将点的坐标代入解析式,解析式成立者即为正确答案.10、A【解析】试题分析:根据无理数是无限不循环小数,可得A.是无理数,B.,C.,D.是有理数,故选A.考点:无理数二、填空题(每小题3分,共24分)11、1【解析】

根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD.∴△AOB是直角三角形.∴.∴此菱形的周长为:5×4=1故答案为:1.12、【解析】

根据二次根式的性质,进行计算即可解答【详解】解:﹣.故答案为:﹣.【点睛】此题考查二次根式的化简,解题关键在于掌握运算法则13、或【解析】

根据勾股定理求出AD(或BD),根据算术平方根的大小比较方法解答.【详解】由勾股定理得,AD=,3<<4,(同理可求BD=)故答案为:AD或BD.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.14、-4,-1.【解析】

不等式组整理后,根据所有整数解的和为-9,确定出x的值,进而求出a的范围,分式方程去分母转化为整式方程,检验即可得到满足题意a的值,求出符合条件的所有整数a即可.【详解】解:,

不等式组整理得:-4≤x<a,

由不等式组所有整数解的和为-9,得到-2<a≤-1,或1<a≤2,

即-6<a≤-1,或1<a≤6,

分式方程,

去分母得:y2-4+2a=y2+(a+2)y+2a,

解得:y=-,经检验y=-为方程的解,

得到a≠-2,∵有整数解,

∴则符合条件的所有整数a为-4,-1,

故答案为:-4,-1.【点睛】此题考查分式方程的解,一元一次不等式组的整数解,熟练掌握运算法则是解题的关键.15、=<【解析】

根据八个数据x1,x2,x3,……x8,的平均数为8,方差为1,利用平均数和方差的计算方法,可求出,,再分别求出9个数的平均数和方差,然后比较大小就可得出结果【详解】解:∵八个数据x1,x2,x3,……x8,的平均数为8,∴∴,∵增加一个数8后,九个数据x1,x2,x3,8…x8的平均数为:;∵八个数据x1,x2,x3,……x8,的方差为1,∴∴∵增加一个数8后,九个数据x1,x2,x3,8…x8的方差为:;故答案为:=,<【点睛】本题考查方差,算术平均数等知识,解题的关键是熟练掌握算术平均数与方差的求法,属于中考常考题型.16、【解析】

先用含m的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m的取值范围.【详解】∵3x-m+1>0,∴3x>m-1,∴x>,∵不等式3x-m+1>0的最小整数解为2,∴1≤<3,解之得.故答案为:.【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m的不等式是解答本题的关键.17、【解析】

根据点A和点B的坐标关系即可求出正比例函数的增减性,然后根据增减性与比例系数的关系列出不等式,即可求出m的取值范围.【详解】解:∵正比例函数的图象过点和点,且时,,∴该正比例函数y随x的增大而减小∴解得:故答案为:【点睛】此题考查的是正比例函数的增减性,掌握正比例函数的增减性与比例系数的关系是解决此题的关键.18、4【解析】

增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入整式方程算出未知字母的值.【详解】方程两边都乘(x−2),得2x−m=3(x−2),∵原方程有增根,∴最简公分母x−2=0,即增根为x=2,把x=2代入整式方程,得m=4.故答案为:4.【点睛】此题考查分式方程的增根,解题关键在于根据方程有增根进行解答.三、解答题(共66分)19、参见解析.【解析】试题分析:此题利用对角线相等的平行四边形是矩形的判定方法来判定四边形ABCD是矩形.试题解析:在□ABCD中,应用平行四边形性质得到AO=CO,BO=DO,又∵∠2=∠2,∴BO=CO,∴AO=BO=CO=DO,∴AC=BD,∴□ABCD为矩形.考点:2.矩形的判定;2.平行四边形性质.20、(1)证明见解析;(2)证明见解析.【解析】

(1)根据圆内接四边形的性质可得,根据邻补角互补可得,进而得到,然后利用等边对等角可得,进而可得;(2)首先证明是等边三角形,进而可得,再根据,可得△ABE是等腰三角形,进而可得△ABE是等边三角形.【详解】解:(1)∵四边形ABCD是⊙O的内接四边形,∴,∵,∴,∵DC=DE,∴,∴;(2)∵,∴△ABE是等腰三角形,∵EO⊥CD,∴CF=DF,∴EO是CD的垂直平分线,∴ED=EC,∵DC=DE,∴DC=DE=EC,∴△DCE是等边三角形,∴,∴△ABE是等边三角形.【点睛】本题考查圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.21、【解析】

由在菱形ABCD中,对角线AC,BD交于点O,长度分别是8和6,可求得OA与OB的长,AC⊥BD,然后由勾股定理求得AB的长,继而求得答案.【详解】解:∵四边形ABCD是菱形,∴OA=AC═×4=2,OB=BD=×2=1,AC⊥BD,∴AB==,∴菱形的周长为4.【点睛】此题考查了菱形的性质.注意菱形的对角线互相平分且垂直且互相平分定理的应用是解此题的关键.22、(1),(2)【解析】

(1)设王老师步行的平均速度,则他骑车的平均速度,根据“到距学校的某商场去给学生买奖品,他先步行了后,换骑上了共享单车,到达商场时,全程总共刚好花了.已知王老师骑共享单车的平均速度是步行速度的3倍”列出方程,即可解答.(2)设王老师返回时步行了,根据(1)列出不等式,即可解答.【详解】解:(1)设王老师步行的平均速度,则他骑车的平均速度,根据题意,得.解这个方程,得.经检验,是原方程的根答:王老师步行的平均速度为,他骑车的平均速度为.(2)设王老师返回时步行了.则,.解得,.答:王老师,返回时,最多可步行.【点睛】此题考查了分式方程的应用,一元一次不等式的应用,解题关键在于根据题意正确列出方程、列出不等式.23、(1);(2)【解析】

(1)利用正方形的面积减去三个顶点上三角形的面积即可;(2)作点A关于x轴的对称点A′,连接A′B交x轴于点P,则P点即为所求,利用勾股定理求出A′P的长即可.【详解】解:(1)(1)S△ABC=3×3−×2×3−×3×1−×2×1=9−3−−1=故填:;(2)点关于轴对称的点连接,(或点关于轴对称的点连接)与轴的交点即为满足条件的点,(注:点的坐标为)是边长为5和2的矩形的对角线所以即的最小值为.【点睛】本题考查的是作图−应用与设计作图,根据题意作出点A的对称点A′是解答此题的关键.24、50mm【解析】

连接两孔中心,然后如图构造一个直角三角形进而求解即可.【详解】如图所示,AC即为所求的两孔中心距

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论