辽宁省盘锦市双台子区一中学2022-2023学年八年级数学第二学期期末综合测试模拟试题含解析_第1页
辽宁省盘锦市双台子区一中学2022-2023学年八年级数学第二学期期末综合测试模拟试题含解析_第2页
辽宁省盘锦市双台子区一中学2022-2023学年八年级数学第二学期期末综合测试模拟试题含解析_第3页
辽宁省盘锦市双台子区一中学2022-2023学年八年级数学第二学期期末综合测试模拟试题含解析_第4页
辽宁省盘锦市双台子区一中学2022-2023学年八年级数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在某人才招聘会上,组办方对应聘者进行了“听、说、读、写”四项技能测试,若人才要求是具有强的“听”力,较强的“说与“读“能力及基本的“写”能力,根据这个要求,听、说、读、写”四项技能测试比较合适的权重设计是A. B. C. D.2.下列命题,①4的平方根是2;②有两边和一角相等的两个三角形全等;③等腰三角形的底角必为锐角;④两组对角分别相等的四边形是平行四边形.其中真命题有()A.4个 B.3个 C.2个 D.1个3.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或64.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B. C. D.5.下列关于一元二次方程x2+bx+c=0的四个命题①当c=0,b≠0时,这个方程一定有两个不相等的实数根;②当c≠0时,若p是方程x2+bx+c=0的一个根,则是方程cx2+bx+1=0的一个根;③若c<0,则一定存在两个实数m<n,使得m2+mb+c<0<n2+nb+c;④若p,q是方程的两个实数根,则p﹣q=,其中是假命题的序号是()A.① B.② C.③ D.④6.关于的分式方程有增根,则的值为A.0 B. C. D.7.如图,一次函数的图象交轴于点,则不等式的解集为()A. B. C. D.8.关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分 B.对角线互相垂直C.对角线相等 D.对角线平分一组对角9.已知一次函数的图象过点(0,3),且与两坐标轴围成的三角形的面积为3,则这个一次函数的表达式为()A.y=1.5x+3 B.y=-1.5x+3C.y=1.5x+3或y=-1.5x+3 D.y=1.5x-3或y=-1.5x-310.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则的值是_____.12.某正比例函数图象经过点(1,2),则该函数图象的解析式为___________13.我们把“宽与长的比等于黄金比的矩形称为黄金矩形”,矩形是黄金矩形,且,则__________.14.如图,将三个边长都为a的正方形一个顶点重合放置,则∠1+∠2+∠3=_______.15.设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=______.16.若关于x的一元一次不等式组有解,则m的取值范围为__________.17.如图,将一块边长为12cm正方形纸片ABCD的顶点A折叠至DC边上的E点,使DE=5,折痕为PQ,则PQ的长为_________cm.18.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AB=5,则BC=_____.三、解答题(共66分)19.(10分)某老师计算学生的学期总评成绩时按照如下的标准:平时成绩占20%,期中成绩占30%,期末成绩占50%.小东和小华的成绩如下表所示:学生平时成绩期中成绩期末成绩小东708090小华907080请你通过计算回答:小东和小华的学期总评成绩谁较高?20.(6分)解分式方程:(1)(2)21.(6分)为了贯彻落实区中小学“阅读·写字·演讲”三项工程工作,我区各校大力推广阅读活动,某校初二(1)班为了解2月份全班学生课外阅读的情况,调查了全班学生2月份读书的册数,并根据调查结果绘制了如下不完整的条形统计图和扇形统计图:根据以上信息解决下列问题:(1)参加本次问卷调查的学生共有______人,其中2月份读书2册的学生有______人;(2)补全条形统计图,并求扇形统计图中读书3册所对应扇形的圆心角度数.22.(8分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?23.(8分)国家规定“中小学生每天在校体育活动时间不低于1h”,为此,某市就“每天在校体育活动”时间的问题随机调查了辖区内320名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是;(2)本次调查数据的中位数落在组内;(3)若该市辖区内约有32000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?24.(8分)在△ABC中,AM是中线,D是AM所在直线上的一个动点(不与点A重合),DE∥AB交AC所在直线于点F,CE∥AM,连接BD,AE.(1)如图1,当点D与点M重合时,观察发现:△ABM向右平移BC到了△EDC的位置,此时四边形ABDE是平行四边形.请你给予验证;(2)如图2,图3,图4,是当点D不与点M重合时的三种情况,你认为△ABM应该平移到什么位置?直接在图中画出来.此时四边形ABDE还是平行四边形吗?请你选择其中一种情况说明理由.25.(10分)如图:在△ABC中,点E,F分别是BA,BC边的中点,过点A作AD∥BC交FE的延长线于点D,连接DB,DC.(1)求证:四边形ADFC是平行四边形;(2)若∠BDC=90°,求证:CD平分∠ACB;(3)在(2)的条件下,若BD=DC=6,求AB的长.26.(10分)在某超市购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元.购买10件甲商品和10件乙商品需要多少元?

参考答案一、选择题(每小题3分,共30分)1、A【解析】

数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.依次即可求解.【详解】解:人才要求是具有强的“听”力,较强的“说与“读“能力及基本的“写”能力,听、说、读、写”四项技能测试比较合适的权重设计是.故选:.【点睛】本题考查加权平均数,解题的关键是明确题意,找出所求问题需要的条件,会计算加权平均数.2、C【解析】

根据平方根的定义对①进行判断;根据全等三角形的判定方法对②进行判断;根据等腰三角形的性质和平行四边形的判定方法对③④进行判断.【详解】解:①4的平方根是±2,是假命题;

②有两边和其夹角相等的两个三角形全等,是假命题;

③等腰三角形的底角必为锐角,是真命题;

④两组对角分别相等的四边形是平行四边形是真命题;

故选:C.【点睛】本题考查命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3、D【解析】以AB为对角线将图形补成长方形,由已知可得缺失的两部分面积相同,即3×6=x×(9-x),解得x=3或x=6,故选D.【点睛】本题考查了正方形的性质,图形的面积的计算,准确地区分和识别图形是解题的关键.4、A【解析】

根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,

∴k<0,

∵一次函数y=x+k的一次项系数大于0,常数项小于0,

∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.

故选:A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).5、D【解析】

根据一元二次方程根的判别式、方程的解的定义、二次函数与一元二次方程的关系、根与系数的关系判断即可.【详解】当c=0,b≠0时,△=b2>0,∴方程一定有两个不相等的实数根,①是真命题;∵p是方程x2+bx+c=0的一个根,∴p2+bp+c=0,∴1++=0,∴是方程cx2+bx+1=0的一个根,②是真命题;当c<0时,抛物线y=x2+bx+c开口向上,与y轴交于负半轴,则当﹣<m<0<n时,m2+mb+c<0<n2+nb+c,③是真命题;p+q=﹣b,pq=c,(p﹣q)2=(p+q)2﹣4pq=b2﹣4c,则|p﹣q|=,④是假命题,故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6、D【解析】分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x+2=0,得到x=-2,然后代入化为整式方程的方程算出m的值即可.详解:方程两边都乘(x+2),得:x-5=m,∵原方程有增根,∴最简公分母:x+2=0,解得x=-2,当x=-2时,m=-1.故选D.点睛:此题考查了分式方程增根的知识.注意增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7、C【解析】

观察函数图象,找出在x轴上方的函数图象所对应的x的取值,由此即可得出结论.【详解】解:观察函数图象,发现:

当时,一次函数图象在x轴上方,

不等式的解集为.

故选:C.【点睛】本题考查了一次函数与一元一次不等式,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.8、C【解析】

由矩形的对角线性质和平行四边形的对角线性质即可得出结论.【详解】解:矩形的对角线互相平分且相等,平行四边形的对角线互相平分,但不一定相等,∴矩形具备而平行四边形不一定具备的是对角线相等.故选C.【点睛】本题考查了矩形的性质、平行四边形的性质;熟记矩形和平行四边形的性质是解题的关键.9、C【解析】

先求出一次函数y=kx+b与x轴和y轴的交点,再利用三角形的面积公式得到关于k的方程,解方程即可求出k的值.【详解】解:∵一次函数y=kx+b(k≠0)图象过点(0,3),

∴b=3,

令y=0,则x=-,

∵函数图象与两坐标轴围成的三角形面积为2,

∴×2×|-|=2,即||=2,

解得:k=±1.5,

则函数的解析式是y=1.5x+3或y=-1.5x+3.

故选C.【点睛】本题考查一次函数图象上点的坐标特征和三角形的面积公式,有一定的综合性,注意点的坐标和线段长度的转化.10、C【解析】

根据轴对称图形和中心对称图形的定义进行判断即可.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、既是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误;故选C.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是正确判断的关键.二、填空题(每小题3分,共24分)11、:2或﹣1.【解析】试题解析:当k>0时,y值随x值的增大而增大,∴,解得:,此时=2;当k<0时,y值随x值的增大减小,∴,解得:,此时=-1.综上所述:的值为2或-1.12、【解析】

设正比例函数的解析式为y=kx,然后把点(1,2)代入y=kx中求出k的值即可.【详解】解:设正比例函数的解析式为y=kx,把点(1,2)代入得,2=k×1,解得k=2,∴该函数图象的解析式为:;故答案为:.【点睛】本题主要考查了待定系数法求正比例函数解析式,掌握待定系数法求正比例函数解析式是解题的关键.13、或【解析】

根据黄金矩形的定义,列出方程进行解题即可【详解】∵矩形ABCD是黄金矩形∴或∴得到方程或解得AB=2或AB=【点睛】本题考查黄金分割比的应用,本题的关键在于能够读懂黄金矩形的定义,对两边的关系进行分情况讨论14、【解析】

利用重合部分的角相等和等角的余角相等,逐步判定∠2=∠COB

,即可完成解答。【详解】解:如图∵都是正方形∴∠FOC=∠EOB=∠DOA=又∵∠2+∠EOC=∠BOC+∠EOC=∴∠2=∠BOC∴∠1+∠2+∠3=∠DOA=故答案为。【点睛】本题主要考查了正方形的性质以及重合部分的角相等和等角的余角相等的知识,其中确定∠2=∠BOC是解题的关键。15、2016【解析】由题意可得,,,∵,为方程的个根,∴,,∴.16、m.【解析】

首先解不等式,利用m表示出两个不等式的解集,根据不等式组有解即可得到关于m的不等式,从而求解.【详解】,解①得:x<2m,解②得:x>2﹣m,根据题意得:2m>2﹣m,解得:m.故答案为:m.【点睛】本题考查了解不等式组,解决本题的关键是熟记确定不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17、13【解析】

先过点P作PM⊥BC于点M,利用三角形全等的判定得到△PQM≌△ADE,从而求出PQ=AE.【详解】过点P作PM⊥BC于点M,由折叠得到PQ⊥AE,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ,∵AD∥BC,∴∠APQ=∠PQM,则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD∴△PQM≌△ADE∴PQ=AE=故答案是:13.【点睛】本题主要考查正方形中的折叠问题,正方形的性质.解决本题的关键是能利用折叠得出PQ⊥AE从而推理出∠AED=∠APQ=∠PQM,为证明三角形全等提供了关键的条件.18、5;【解析】

根据矩形性质得出AC=2AO,BD=2BO,AC=BD,推出AO=OB,得出等边三角形AOB,利用勾股定理即可得出答案.【详解】∵四边形ABCD是矩形,∴AC=BD,AC=2AO,BD=2BO,∠ABC=90°,∴AO=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=5,∴AC=2AO=10,在Rt△ABC中,由勾股定理得,BC=.故答案为:5.【点睛】本题考查了矩形的性质及勾股定理.根据矩形的性质及∠AOB=60°得出△AOB是等边三角形是解题的关键.三、解答题(共66分)19、小东的学期总评成绩高于小华【解析】

根据加权平均数公式,分别求出小东和小华的学期总评分,比较得到结果.【详解】解:小东总评成绩为(分);小华总评成绩为(分).小东的学期总评成绩高于小华.【点睛】本题考查加权平均数,解题的关键是熟练掌握加权平均数.20、(1);(2)无解【解析】

(1)最简公分母为x(x+6).方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.结果需检验(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)解:方程两边同乘以得解这个方程得,检验:当时,所以原方程的解是(2)解:方程两边同乘以得解这个方程得,检验:当时,所以是增根,分式方程无解【点睛】此题考查解分式方程,解题关键在于掌握运算法则21、(1)50;17;(2)补全条形图见详解;144°.【解析】

(1)根据条形统计图读书4册的人数为4人,扇形图中占比8%,即可求得总人数;再根据读书2册人数占比34%,即可求得读书2册的人数;(2)根据条形图中数据以及(1)中所求,可容易求得读书3册的人数,读书3册的人数除以总人数即为扇形图中所占百分比,再乘以360°,即为读书3册所对应扇形的圆心角度数.【详解】解:(1)根据条形统计图及扇形统计图知:本次问卷调查的学生共有人,读书2册的学生有人.(2)根据条形统计图知:读书3册的学生有人,补全如图:读书3册的学生人数占比.∴扇形统计图中读书3册所对应扇形的圆心角度数为:.【点睛】本题考查直方图,难度一般,是中考的常考知识点,熟练掌握扇形图、条形图的相关知识有顺利解题的关键.22、(1)20%;(2)12.1.【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.23、(1)根C组的人数为140人;(2)调查数据的中位数落在C组;(3)达国家规定体育活动时间的人约有20000人.【解析】

(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C组的人数;

(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得答案;

(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【详解】解:(1)根据题意有:C组的人数为320﹣20﹣100﹣60=140;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=62.5%.所以,达国家规定体育活动时间的人约有32000×62.5%=20000(人).【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.24、(1)见解析;(2)画图见解析.【解析】

(1)根据一组对边平行且相等可以证明;(2)根据一组对边平行且相等可以证明.【详解】(1)∵平移,∴AB=DE,且DE∥BA,∴四边形ABDE是平行四边形;(2)平移到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论