山东省济南平阴县联考2023年八年级数学第二学期期末综合测试试题含解析_第1页
山东省济南平阴县联考2023年八年级数学第二学期期末综合测试试题含解析_第2页
山东省济南平阴县联考2023年八年级数学第二学期期末综合测试试题含解析_第3页
山东省济南平阴县联考2023年八年级数学第二学期期末综合测试试题含解析_第4页
山东省济南平阴县联考2023年八年级数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.点A(m+4,m)在平面直角坐标系的x轴上,则点A关于y轴对称点的坐标为()A. B. C. D.2.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S△DGF的值为()A.4cm2 B.6cm2 C.8cm2 D.9cm23.如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是()A.2 B.2 C.2 D.4.将点向左平移2个单位长度得到点,则点的坐标是()A. B. C. D.5.计算的结果是()A.-2 B.2 C.-4 D.46.若=,则x的取值范围是()A.x<3 B.x≤3 C.0≤x<3 D.x≥07.已知,如图,正方形的面积为25,菱形的面积为20,求阴影部分的面积()A.11 B.6.5 C.7 D.7.58.如图,在平行四边形中,对角线交于点,并且,点是边上一动点,延长交于点,当点从点向点移动过程中(点与点,不重合),则四边形的变化是()A.平行四边形→菱形→平行四边形→矩形→平行四边形B.平行四边形→矩形→平行四边形→菱形→平行四边形C.平行四边形→矩形→平行四边形→正方形→平行四边形D.平行四边形→矩形→菱形→正方形→平行四边形9.已知三角形的周长是1.它的三条中位线围成的三角形的周长是()A.1 B.12 C.8 D.410.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E且AB=AE,延长AB与DE的延长线相交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③BF=AD;④S△BEF=S△ABC;⑤S△CEF=S△ABE;其中正确的有()A.2个 B.3个 C.4个 D.5个11.如图,,,点在边上(与、不重合),四边形为正方形,过点作,交的延长线于点,连接,交于点,对于下列结论:①;②四边形是矩形;③.其中正确的是()A.①②③ B.①② C.①③ D.②③12.分式为0的条件是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=____度.14.正六边形的每个内角等于______________°.15.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.16.的小数部分为_________.17.今有三部自动换币机,其中甲机总是将一枚硬币换成2枚其他硬币;乙机总是将一枚硬币换成4枚其他硬币;丙机总是将一枚硬币换面10枚其他硬币.某人共进行了12次换币,便将一枚硬币换成了81枚.试问他在丙机上换了_____次?18.一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性______摸出黄球可能性.(填“等于”或“小于”或“大于”).三、解答题(共78分)19.(8分)某旅游风景区,门票价格为a元/人,对团体票规定:10人以下(包括10人)不打折,10人以上超过10人部分打b折.设团体游客人,门票费用为y元,y与x之间的函数关系如图所示.(1)填空:a=_______;b=_________.(2)请求出:当x>10时,与之间的函数关系式;(3)导游小王带A旅游团到该景区旅游,付门票费用2720元(导游不需购买门票),求A旅游团有多少人?20.(8分)如图,在直角梯形ABCD中,AB∥DC,∠B=90°,AB=16,BC=12,CD=1.动点M从点C出发,沿射线CD方向以每秒2个单位长的速度运动;动点N从B出发,在线段BA上,以每秒1个单位长的速度向点A运动,点M、N分别从C、B同时出发,当点N运动到点A时,点M随之停止运动.设运动时间为t(秒).(1)设△AMN的面积为S,求S与t之间的函数关系式,并确定t的取值范围;(2)当t为何值时,以A、M、N三点为顶点的三角形是等腰三角形?21.(8分)如图,已知中,,点以每秒1个单位的速度从向运动,同时点以每秒2个单位的速度从向方向运动,到达点后,点也停止运动,设点运动的时间为秒.(1)求点停止运动时,的长;(2)两点在运动过程中,点是点关于直线的对称点,是否存在时间,使四边形为菱形?若存在,求出此时的值;若不存在,请说明理由.(3)两点在运动过程中,求使与相似的时间的值.22.(10分)如图,点A(1,0),点B在y轴正半轴上,直线AB与直线l:y=相交于点C,直线l与x轴交于点D,AB=.(1)求点D坐标;(2)求直线AB的函数解析式;(3)求△ADC的面积.23.(10分)某工厂制作甲、乙两种窗户边框,已知同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个,且制成一个甲种边框比制成一个乙种边框需要多用的材料.(1)求制作每个甲种边框、乙种边框各用多少米材料?(2)如果制作甲、乙两种边框的材料共640米,要求制作乙种边框的数量不少于甲种边框数量的2倍,求应最多安排制作甲种边框多少个(不计材料损耗)?24.(10分)如图,一次函数y=2x+4的图象与x、y轴分别相交于点A、B,四边形ABCD是正方形.(1)求点A、B、D的坐标;(2)求直线BD的表达式.25.(12分)解不等式组:,并把它的解集在数轴上表示出来.26.将矩形纸片按图①所示的方式折叠,得到菱形(如图②),若,求的长.

参考答案一、选择题(每题4分,共48分)1、A【解析】解:∵点A(m+4,m)在平角直角坐标系的x轴上,∴m=0,∴点A(4,0),∴点A关于y轴对称点的坐标为(-4,0).故选A.2、A【解析】试题分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.解:如图,取CG的中点H,连接EH,∵E是AC的中点,∴EH是△ACG的中位线,∴EH∥AD,∴∠GDF=∠HEF,∵F是DE的中点,∴DF=EF,在△DFG和△EFH中,,∴△DFG≌△EFH(ASA),∴FG=FH,S△EFH=S△DGF,又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,∴S△CEF=3S△EFH,∴S△CEF=3S△DGF,∴S△DGF=×12=4(cm2).故选A.考点:三角形中位线定理.3、A【解析】如图,连接BP,设点C到BE的距离为h,则S△BCE=S△BCP+S△BEP,即BE⋅h=BC⋅PQ+BE⋅PR,∵BE=BC,∴h=PQ+PR,∵正方形ABCD的边长为4,∴h=4×=.故答案为.4、C【解析】

让点A的横坐标减2,纵坐标不变,可得A′的坐标.【详解】解:将点A(4,2)向左平移2个单位长度得到点A′,则点A′的坐标是(4−2,2),即(2,2),故选:C.【点睛】本题考查坐标的平移变化,用到的知识点为:左右平移只改变点的横坐标,左减右加.5、B【解析】

根据(a≥0)可得答案.【详解】解:,故选:B.【点睛】此题主要二次根式的性质,关键是掌握二次根式的基本性质:①≥0;a≥0(双重非负性).②(a≥0)(任何一个非负数都可以写成一个数的平方的形式).③(算术平方根的意义).6、C【解析】试题解析:根据题意得:解得:故选C.7、A【解析】

由题意易得AB=BC=BP=PQ=QC=5,EC=4,在Rt△QEC中,可根据勾股定理求得EQ=3,又有PE=PQ-EQ=2,进而可得S阴影的值.【详解】∵正方形ABCD的面积是25,

∴AB=BC=BP=PQ=QC=5,

又∵S菱形BPQC=PQ×EC=5×EC=20,

∴S菱形BPQC=BC•EC,

即20=5•EC,

∴EC=4

在Rt△QEC中,EQ==3;

∴PE=PQ-EQ=2,

∴S阴影=S正方形ABCD-S梯形PBCE=25-×(5+2)×4=25-14=1.故选A.【点睛】此题考查菱形的性质,正方形的性质,解题关键在于利用勾股定理进行计算.8、A【解析】

根据图形结合平行四边形、矩形、菱形的判定逐项进行判断即可.【详解】解:点E从D点向A点移动过程中,当∠EOD<15°时,四边形AFCE为平行四边形,

当∠EOD=15°时,AC⊥EF,四边形AFCE为菱形,

当15°<∠EOD<75°时,四边形AFCE为平行四边形,

当∠EOD=75°时,∠AEF=90°,四边形AFCE为矩形,

当75°<∠EOD<105°时,四边形AFCE为平行四边形,

故选A.【点睛】本题考查了平行四边形、矩形、菱形的判定的应用,主要考查学生的理解能力和推理能力.9、C【解析】

由中位线定义可得新三角形的各边长为原三角形各边长的一半,即可求其周长.【详解】解:∵三角形的周长是1,∴它的三条中位线围成的三角形的周长是:1×=2.故选:C.【点睛】此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.10、B【解析】

根据平行四边形的性质可得AD//BC,AD=BC,根据平行线的性质可得∠BEA=∠EAD,根据等腰三角形的性质可得∠ABE=∠BEA,即可证明∠EAD=∠ABE,利用SAS可证明△ABC≌△EAD;可得①正确;由角平分线的定义可得∠BAE=∠EAD,即可证明∠ABE=∠BEA=∠BAE,可得AB=BE=AE,得出②正确;由S△AEC=S△DEC,S△ABE=S△CEF得出⑤正确;题中③和④不正确.综上即可得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠BEA=∠EAD,∵AB=AE,∴∠ABE=∠BEA,∴∠EAD=∠ABE,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS);故①正确;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠ABE=∠BEA=∠BAE,∴∠BAE=∠BEA,∴AB=BE=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;⑤正确.若AD=BF,则BF=BC,题中未限定这一条件,∴③不一定正确;如图,过点E作EH⊥AB于H,过点A作AG⊥BC于G,∵△ABE是等边三角形,∴AG=EH,若S△BEF=S△ABC,则BF=BC,题中未限定这一条件,∴④不一定正确;综上所述:正确的有①②⑤.故选:B.【点睛】本题考查平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质,熟练掌握等底、等高的三角形面积相等的性质是解题关键.11、A【解析】

由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;由△AFG≌△DAC,推出四边形BCGF是矩形,②正确;由矩形的性质和相似三角形的判定定理证出△ACD∽△FEQ,③正确.【详解】解:①∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG.故正确;②∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形.故正确;③∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ.故正确.综上所述,正确的结论是①②③.故选A.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.12、C【解析】

根据分式的分子等于0求出m即可.【详解】由题意得:2m-1=0,解得,此时,故选:C.【点睛】此题考查依据分式值为零的条件求未知数的值,正确掌握分式值为零的条件:分子为零,分母不为零.二、填空题(每题4分,共24分)13、1【解析】

首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA的度数即可.【详解】解:∵正五边形的外角为10°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=1°,∵AF∥CD,∴∠DFA=∠CDB=1°,故答案为1.【点睛】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.14、120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角.15、90分.【解析】试题分析:根据加权平均数的计算公式求解即可.解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.考点:加权平均数.16、﹣1.【解析】解:∵<<,∴1<<5,∴的整数部分是1,∴的小数部分是﹣1.故答案为﹣1.17、8【解析】

根据题意可知,在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;找到相等关系式列出方程解答即可.【详解】解:设:在甲机换了x次.乙机换了y次.丙机换了z次.在甲机上每换一次多1个;在乙机上每换一次多3个;在丙机上每换一次多9个;进行了12次换币就将一枚硬币换成了81枚,多了80个;∴由②-①,得:2y+8z=68,∴y+4z=34,∴y=34-4z,结合x+y+z=12,能满足上面两式的值为:∴;即在丙机换了8次.故答案为:8.【点睛】此题关键是明白一枚硬币在不同机上换得个数不同,但是通过一枚12次取了81枚,多了80枚,找到等量关系,再根据题意解出即可.18、小于【解析】

先分别求出摸出各种颜色球的概率,再进行比较即可得出答案.【详解】解:∵袋子中有1个白球、1个红球和2个黄球,共有4个球,∴摸到白球的概率是,摸到红球的概率是,摸到黄球的概率是=,∴摸出白球可能性<摸出黄球的可能性;故答案为小于.【点睛】本题主要考查了可能性的大小,用到的知识点为:可能性等于所求情况数与总情况数之比.三、解答题(共78分)19、(1)80;8(2)y=64x+160;(3)40人【解析】分析:(1)根据函数图象可以求得a、b的值;(2)根据函数图象可以求得当x>10时,y与x之间的函数关系式;(3)根据(2)中的解析式可以求得A旅游团的人数.详解:(1)由图象可知,a=800÷10=80,b=×10=8,故答案为:80,8;(2)当x>10时,设y与x之间的函数关系式是y=kx+m,则,解得,,即当x>10时,y与x之间的函数关系式是y=64x+160;(3)∵2720>800,∴将y=2720代入y=64x+160,得2720=64x+160,解得,x=40,即A旅游团有40人.点睛:本题考查一次函数的应用,揭帖关键是明确题意,找出所求问题需要的条件.20、(1);(2)t=3.5或t=【解析】

(1)过点M作MH⊥AB,垂足为H,用含的代数式表示的长,再利用三角形面积公式即可得到答案.(2)先用含的代数式分别表示的长,进行分类讨论,利用腰相等建立方程求解.【详解】(1)如图,过点M作MH⊥AB,垂足为H,则四边形BCMH为矩形.∴MH=BC=2.∵AN=16-t,∴;(2)由(1)可知:BH=CM=2t,BN=t,.以A、M、N三点为顶点的三角形是等腰三角形,可以分三种情况:①若MN=AN.因为:在Rt△MNH中,,所以:MN2=t2+22,由MN2=AN2得t2+22=(16-t)2,解得t=.②若AM=AN.在Rt△MNH中,AM2=(16-2t)2+22.由AM2=AN2得:,即3t2-32t+144=4.由于△=,∴3t2-32t+144=4无解,∴.③若MA=MN.由MA2=MN2,得t2+22=(16-2t)2+22整理,得3t2-64t+256=4.解得,t2=16(舍去)综合上面的讨论可知:当t=秒或t=秒时,以A、M、N三点为顶点的三角形是等腰三角形.【点睛】本题考察的是梯形通过作辅助线化成直角三角形的问题与等腰三角形存在性问题,掌握分类讨论是解题的关键.21、(1)(2)(3)或【解析】

(1)求出点Q的从B到A的运动时间,再求出AP的长,利用勾股定理即可解决问题.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.根据DQ=CK,构建方程即可解决问题.(3)分两种情形:如图3-1中,当∠APQ=90°时,如图3-2中,当∠AQP=90°时,分别构建方程即可解决问题.【详解】(1)在Rt△ABC中,∵∠C=90°,AC=6,BC=8,∴AB==10,点Q运动到点A时,t==5,∴AP=5,PC=1,在Rt△PBC中,PB=.(2)如图1中,当四边形PQCE是菱形时,连接QE交AC于K,作QD⊥BC于D.∵四边形PQCE是菱形,∴PC⊥EQ,PK=KC,∵∠QKC=∠QDC=∠DCK=90°,∴四边形QDCK是矩形,∴DQ=CK,∴,解得t=.∴t=s时,四边形PQCE是菱形.(3)如图2中,当∠APQ=90°时,∵∠APQ=∠C=90°,∴PQ∥BC,∴,∴,∴.如图3中,当∠AQP=90°时,∵△AQP∽△ACB,∴,∴,∴,综上所述,或s时,△APQ是直角三角形.【点睛】本题属于相似形综合题,考查了菱形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题.22、(1)点D坐标为(4,0);(2)s=﹣1x+1;(1)【解析】【分析】(1)设y=0,可求D的坐标;(2)由勾股定理求出OB,再用待定系数法求函数解析式;(1)根据三角形面积公式:S△ABC=,可得.【详解】解;(1)当y=0时,,得x=4,∴点D坐标为(4,0).(2)在△AOB中,∠AOB=90°∴OB=,∴B坐标为(0,1),∴直线AB经过(1,0),(0,1),设直线AB解析式s=kt+b,∴解得,∴直线AB解析式为s=﹣1x+1.(1)如图,由得∴点C坐标为(2,-1)作CM⊥x轴,垂足为M,则点M坐标为(2,0)∴CM=0-(-1)=1AD=4-1=1.∴S△ABC=.【点睛】本题考核知识点:一次函数.解题关键点:熟记一次函数的性质.23、(1)甲框每个2.4米,乙框每个2米;(2)最多可购买甲种边框100个.【解析】

(1)设每个乙种边框所用材料米,则制作甲盒用(1+20%)x米材料,根据“同样用12米材料制成甲种边框的个数比制成乙种边框的个数少1个”,列出方程,即可解答;(2)设生产甲边框个,则乙边框生产个,再根据“要求制作乙种边框的数量不少于甲种边框数量的2倍”求出y的取值范围,即可解答.【详解】解(1)设每个乙种边框所用材料米则经检验:是原方程的解,1.2x=2.4,答:甲框每个2.4米,乙框每个2米.(2)设生产甲边框个,则乙边框生产个,则所以最多可购买甲种边框100个.【点睛】此题考查分式方程的应用,一元一次不等式的应用,解题关键在于列出方程.24、(1)A(﹣2,0),点B(0,1),D(2,﹣2);(2)y=﹣3x+1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论