材料科学基础辅导与习题-上交课件 06ch2-2_第1页
材料科学基础辅导与习题-上交课件 06ch2-2_第2页
材料科学基础辅导与习题-上交课件 06ch2-2_第3页
材料科学基础辅导与习题-上交课件 06ch2-2_第4页
材料科学基础辅导与习题-上交课件 06ch2-2_第5页
已阅读5页,还剩65页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§2-2参考书卢光熙等,金属学教程,上海科学技术出版社,1985

胡赓祥等,金属学,上海科学技术出版社,1980

[美]约翰.D.费豪文,物理冶金学基础,上海科学技术出版社,1980

石德珂等,材料科学基础,机械工业出版社,1999潘金生等,材料科学基础,清华大学出版社,1995

1§2-2元素的晶体结构1.周期表中的元素分类2.典型金属的晶体结构3.晶体中原子的堆垛方式4.晶体结构中的间隙5.金属原子半径6.亚金属的晶体结构21.周期表中的元素分类ⅠBⅡBⅢAⅣAⅤA

BCN

Al

SiP

CuZnGaO

GeAs

Ag

CdInA6SnA4A5

Sb

Au

HgRTTlA2A3PbA1

BiA7

Zn、Cd虽为A3结构,但其c/a较大;Tl和Pb的结构和第一类相同,但原子的离子化不完全,原子间距也比典型金属大;Hg和Sn的结构比较复杂;而Ga则具有复杂的正交结构。

31.1第一类为真正的金属包括ⅠB族及其以左元素,另外还有ⅢA族的Al元素。它们绝大多数都具有高对称性的简单结构,其典型结构为:面心立方结构(代号为A1);体心立方结构(A2);密排六方结构(A3)。1.2第二类为八个金属元素1.3第三类多数为非金属元素如硅、锗、锑、铋等,这类元素多数具有复杂的晶体结构,每个原子具有(8-N)个近邻原子,N为该原子的族数。4/periodic/periodic.html52.典型金属的晶体结构

金属晶体中的结合键是金属键,由于金属键没有方向性和饱和性,使大多数金属晶体都具有排列紧密、对称性高的简单晶体结构,即A1(FCC)、A2(BCC)、

A3(HCP)晶体结构。62.1FaceCenteredCubic(FCC)Atomsarearrangedatthecornersandcenterofeachcubefaceofthecell.Atomsareassumedtotouchalongfacediagonals72.1FaceCenteredCubic(FCC)Thelatticeparameter,a,isrelatedtotheradiusoftheatominthecellthrough:Coordinationnumber:thenumberofnearestneighborstoanyatom.ForFCCsystems,thecoordinationnumberis12.82.1FaceCenteredCubic(FCC)AtomicPackingFactor:theratioofatomicspherevolumetounitcellvolume,assumingahardspheremodel.FCCsystemshaveanAPFof0.74,themaximumpackingforasysteminwhichallsphereshaveequaldiameter.9

2.1FaceCenteredCubic(FCC)

1、Numberofatomsinunitcell

2、Theradiusoftheatom

3、Coordinationnumberandefficiencyofspacefilling

10ThecoordinationnumberforFCCsystems11DensityCalculations

Inthefcccelltheatomstouchalongthefacediagonals,butnotalongthecelledge:Lengthfacediagonal=a(2)1/2=4r

Usethisinformationtocalculatethedensityofan

fccmetal.12Examplecalculation.

Alhasaccparrangementofatoms.

TheradiusofAl=1.423Å(=143.2pm).

CalculatethelatticeparameteroftheunitcellandthedensityofsolidAl(atomicweight=26.98).Solution:

BecauseAlisccpwehaveanfccunitcell.

Cellcontents:4atoms/cell

[8atcorners(each1/8),6infaces(each1/2)]Latticeparameter:

atomsincontactalongfacediagonal,therefore4rAl=a(2)1/2,a=4(1.432Å)/(2)1/2=4.050Å.Density(=rAl)=Mass/Volume=Massperunitcell/Volumeperunitcell

g/cm3

Massofunitcell=mass4Alatoms=(26.98)(g/mol)(1mol/6.022x1023atoms)(4atoms/unitcell)=1.792x10-22g/unitcellVolumeunitcell=a3=(4.05x10-8cm)3=66.43x10-24cm3/unitcellTherefore

rAl

={1.792x10-22g/unitcell}/{66.43x10-24cm3/unitcell}=2.698g/cm3

132.2BodyCenteredCubic

Atomsarearrangedatthecornersofthecubewithanotheratomatthecubecenter.142.2BodyCenteredCubicSinceatomsareassumedtotouchalongthecubediagonalinBCC,thelatticeparameterisrelatedtoatomicradiusthrough:152.2BodyCenteredCubicCoordinationnumberforBCCis8.Eachcenteratomissurroundedbytheeightcorneratoms.ThelowercoordinationnumberalsoresultsinaslightlylowerAPFforBCCstructures.BCChasanAPFof0.68,ratherthan0.74inFCC16

2.2BodyCenteredCubic

1、Numberofatomsinunitcell

2、Theradiusoftheatom

3、Coordinationnumberandefficiencyofspacefilling

172.3HexagonalClosePackedCellofanHCPlatticeisvisualizedasatopandbottomplaneof7atoms,formingaregularhexagonaroundacentralatom.Inbetweentheseplanesisahalf-hexagonof3atoms.HCPisaverycommontypeofstructureforelementalmetals.

ExamplesincludeBe,Mg,Ti,Zr,etc.182.3HexagonalClosePackedTherearetwolatticeparametersinHCP,aandc,representingthebasalandheightparametersrespectively.Intheidealcase,thec/aratiois1.633,however,deviationsdooccur.Thecoordinationnumberoftheatomsinthisstructureis12.

Theyhave6nearestneighborsinthesameclosepackedlayer,3inthelayeraboveand3inthelayerbelow.Thisisoneofthemostefficientmethodsofpackingspheres(theotherthatisequallyefficientiscubicclosepacking,seebelow).

Inbothcasesthespheresfill74%oftheavailablespace.19Hexagonalclose-packedcrystals:theaxialratio

Theidealaxialratio(c/a)forahexagonalclose-packedcrystalstructurecanbecalculatedbyconsideringnon-interactinghardspherespackedinanh.c.p.lattice.Ifthesphereradiusisr,thenthelatticeparametersa(=b)andccanbewrittenintermsofr:2021Thesetworelationshipscanbesolvedfortheidealaxialratioc/a:2r

=

a

={(a/2cos30°)2+(c/2)2}½a2

=

a2/3+c2/44=4/3+c2/a2c/a

=1.633ManymaterialshavethehexagonalPcrystalsystem,buttheaxialratioisrarelyideal.Cadmium,forexample,hasanaxialratioofc/a=1.886.Thisnon-idealstructurehasimplicationsforthebehaviourofthematerial,forexampleinslip.22

2.3HexagonalClosePacked

1、Numberofatomsinunitcell

2、Theradiusoftheatom

3、Coordinationnumberandefficiencyofspacefilling23

ThespacelatticeofHCP

把A、B两个阵点作为一个阵点看待,就可看出密排六方晶体点阵实质上就是一个复式简单六方空间点阵。

242.4多晶型性

在周期表中,大约有40多种元素具有两种或两种以上的晶体结构,即具有同素异晶性,或称多晶型性。它们在不同的温度或压力范围内具有不同的晶体构,故当条件变化时,会由一种结构转变为另一种结构称为多晶型性转变或同素异构转变。25PolymorphismandAllotropyPolymorphismisaphysicalphenomenonwhereamaterialmayhavemorethanonecrystalstructure.Amaterialthatshowspolymorphismexistsinmorethanonetypeofspacelatticeinthesolidstate.Ifthechangeinstructureisreversible,thenthepolymorphicchangeisknownasallotropy.Theprevailingcrystalstructuredependsonboththetemperatureandtheexternalpressure.Onefamiliarexampleisfoundincarbon:graphiteisthestablepolymorphatambientconditions,whereasdiamondisformedatextremelyhighpressures.26Thebestknownexampleforallotropyisiron.Whenironcrystallizesat2800oFitisB.C.C.(d-iron),at2554oFthestructurechangestoF.C.C.(g-ironoraustenite),andat1670oFitagainbecomesB.C.C.(a-ironorferrite).Figure1.Coolingcurveforpureiron.(Allotropicbehaviorofpureiron)2728a-iron(alpha)Theothernamefora-ironisferrite.Thiscrystalhasbodycenteredcubicstructure.TheunitcellandthemicrographofthecrystalareshowninFigures(2)and(3).Figure2.Alphairon(B.C.C)unitcellFigure3.Ferritecrystals29g-iron(Gamma)Theothernameforg-ironisaustenite.Thiscrystalhasfacecenteredcubic(F.C.C)structure.TheunitcellandthemicrographofthecrystalareshowninFigures(4)and(5).Figure4.FacecenteredcubiccrystalunitcellFigure5.Austenitecrystals303.晶体中原子的堆垛方式晶体结构配位数致密度是否密排间隙大小Fcc120.74是小Bcc80.68否大Hcp120.74是小313.晶体中原子的堆垛方式3.1晶体中原子的二维排列方式3.2晶体中密排面原子排列方式3.3空隙位置和密排面的堆积方式3.4面心立方结构中原子的堆垛方式3.5密排六方结构中原子的堆垛方式32ClosepackedlayersofatomsIfwetreattheatomsasspheresandconsideralltheatomsinthesolidtobeofequalsize(asisthecaseforelementalmetals),themostefficientformofpackingistheclosepackedlayer.

Thisisillustratedbelowwhereitisclearthatclose-packingofspheresismoreefficientthan,forexample,squarepacking.

333.1晶体中原子的二维排列方式Belowontheleftisasquarepackedarraycomparedtothemoredenselypackedclosepackedarray.

Withinthesquarepackedlayerthecoordination#ofeachatomis4,

intheclosepackedlayeritis6.

343.2晶体中密排面原子排列方式353.3空隙位置和密排面的堆积方式Tobuildour3-dimensionalmetalstructureswenowneedtostacktheclosepackedlayersontopofeachother.

Thereareseveralwaysofdoingthis.

Themostefficientspacesavingwayistohavethespheresinonelayerfitintothe"holes"ofthelayerbelow.

36ClosePackedStructures

EventhoughFCCandHCPareclosepackedstructures,theyarequitedifferentinthemannerofstackingtheirclosepackedplanes.ClosepackedstackinginHCPtakesplacealongthecdirection(the(0001)plane).FCCclosepackedplanesarealongthe(111).Firstplaneisvisualizedasanatomsurroundedby6nearestneighborsinbothHCPandFCC.37ClosePackedStructuresThesecondplaneinbothHCPandFCCissituatedinthe“holes”abovethefirstplaneofatoms.TwopossibleplacementsforthethirdplaneofatomsThirdplaneisplaceddirectlyabovethefirstplaneofatomsABAstacking--HCPstructureThirdplaneisplacedabovethe“holes”ofthefirstplanenotcoveredbythesecondplaneABCstacking--FCCstructure38ClosePackedStructures39SimilaritiesandDifferenceBetweenthe

FCCandHCPStructureThefacecenteredcubicandhexagonalclosepackedstructuresbothhaveapackingfactorof0.74,consistofcloselypackedplanesofatoms,andhaveacoordinationnumberof12.Thedifferencebetweenthefccandhcpisthestackingsequence.Thehcplayerscycleamongthetwoequivalentshiftedpositionswhereasthefcclayerscyclebetweenthreepositions.Ascanbeseenintheimage,thehcpstructurecontainsonlytwotypesofplaneswithanalternatingABABarrangement.Noticehowtheatomsofthethirdplaneareinexactlythesamepositionastheatomsinthefirstplane.However,thefccstructurecontainsthreetypesofplaneswithaABCABCarrangement.NoticehowtheatomsinrowsAandCarenolongeraligned.Rememberthatcubiclatticestructuresallowslippagetooccurmoreeasilythannon-cubiclattices,sohcpmetalsarenotasductileasthefccmetals.40

41Thetablebelowshowsthestableroomtemperaturecrystalstructuresforseveralelementalmetals

Ananometer(nm)equals10-9meteror10Angstromunits.42MetalCrystalStructureAtomicRadius(nm)AluminumFCC0.1431CadmiumHCP0.1490ChromiumBCC0.1249CobaltHCP0.1253CopperFCC0.1278GoldFCC0.1442Iron(Alpha)BCC0.1241LeadFCC0.1750MagnesiumHCP0.1599MolybdenumBCC0.1363NickelFCC0.1246PlatinumFCC0.1387SilverFCC0.1445TantalumBCC0.1430TitaniumAlphaHCP0.1445TungstenBCC0.1371ZincHCP0.1332433.4CubicClosePacking(CCP)WhilefortheHCPstructurethethirdclosepackedlayerwaspositionedabovethefirst,analternatemethodofstackingistoplacethethirdlayersuchthatitliesinanuniqueposition,inthiswayan"ABCABC..."

closepackedlayersequencecanbecreated,seebelow.

ThismethodofstackingiscallCubicClosePacking(ccp)44453.4CubicClosePacking(CCP)463.5HexagonalclosepackingIfwecallthefirstlayer"A",thenthesecondlayer("B")ispositionedasshownontheleftofthediagrambelow.

Thethirdlayercanthenbeaddedintwoways.

InthefirstwaythethirdlayerfitsintotheholesoftheBlayersuchthattheatomslieabovethoseinlayerA.

ByrepeatingthisarrangementoneobtainsABABAB...stackingorhexagonalclosepacking.

4748Top:Anotherlayercanbeplacedontopinoneoftwoways:overtheupward-pointinggaps(blue)orthedownward-pointinggaps(yellow).LayersBandCshowlayersinthesepositions.

Bottom:Iflayersalternate(left)orarerandomlystacked(right)theoverallstructurehasonlythehexagonalsymmetryofthe

individualsheets.ThealternatingpatterniscalledHexagonalclosepacking.Theoxygenatomsincorundumandhematitehavethispacking.494.晶体结构中的间隙4.1面心立方结构中的间隙4.2体心立方结构中的间隙4.3密排六方结构中的间隙4.4晶体结构中各种间隙汇总504.1面心立方结构中的间隙4.1.1FCC结构中间隙的位置4.1.2FCC结构中间隙的大小4.1.3FCC四面体间隙的位置与个数4.1.4FCC八面体间隙的位置与个数514.1.1FCC结构中间隙的位置524.1.2FCC结构中间隙的大小534.1.3FCC四面体间隙的位置与个数4+4544.1.4FCC八面体间隙的位置与个数1+3554.2体心立方结构中的间隙6×1/2+12×1/4=66×4×1/2=1256体心立方结构中间隙的位置▲四面体空隙是否为八面体空隙的一部?574.3密排六方结构中的间隙四面体:C轴2

竖直棱6×2×1/3+中心3×2=12584.4晶体结构中各种间隙汇总晶体结构八面体间隙四面体间隙间隙数rB/rA

间隙数rB/rA

Bcc60.155120.291Fcc40.41480.225Hcp60.414120.225595.Atomicandionicradii根据X射线测定的晶体结构类型和点阵常数大小,可计算出元素的原子半径R。实际上任何元素的R都不是固定不变的,而是受外界条件、原子间结合力、结合键类型、配位数等多种因素的影响而变化。605.1外界温度和压力的影响温度改变,原子热振动及晶体内点阵缺陷平衡浓

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论