




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年四川省德阳市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.已知集合,A={0,3},B={-2,0,1,2},则A∩B=()A.空集B.{0}C.{0,3}D.{-2,0,1,2,3}
2.设i是虚数单位,则复数(1-i)(1+2i)=()A.3+3iB.-1+3iC.3+iD.-1+i
3.设A-B={x|x∈A且xB},若M={4,5,6,7,8},N={7,8,9,10}则M-N等于()A.{4,5,6,7,8,9,10}B.{7,8}C.{4,5,6,9,10}D.{4,5,6}
4.若一几何体的三视图如图所示,则这个几何体可以是()A.圆柱B.空心圆柱C.圆D.圆锥
5.函数A.1B.2C.3D.4
6.如图所示的程序框图中,输出的a的值是()A.2B.1/2C.-1/2D.-1
7.A.11B.99C.120D.121
8.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-4/3
B.-3/4
C.
D.2
9.以点(2,0)为圆心,4为半径的圆的方程为()A.(x-2)2+y2=16
B.(x-2)2+y2=4
C.(x+2)2+y2=46
D.(x+2)2+y2=4
10.AB>0是a>0且b>0的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件
二、填空题(10题)11.若事件A与事件互为对立事件,则_____.
12.函数y=3sin(2x+1)的最小正周期为
。
13.已知直线l1:ax-y+2a+1=0和直线l2:2x-(a-l)y+2=0(a∈R)则l1⊥l2的充要条件是a=______.
14.
15.己知三个数成等差数列,他们的和为18,平方和是116,则这三个数从小到大依次是_____.
16.
17.执行如图所示的流程图,则输出的k的值为_______.
18.抛物线y2=2x的焦点坐标是
。
19.
20.
三、计算题(5题)21.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
22.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
23.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
24.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
25.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
四、简答题(10题)26.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积
27.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。
28.求经过点P(2,-3)且横纵截距相等的直线方程
29.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由
30.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
31.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.
32.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长
33.求证
34.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
35.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。
五、解答题(10题)36.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
37.(1)在给定的直角坐标系中作出函数f(x)的图象;(2)求满足方程f(x)=4的x的值.
38.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值
39.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2,且|F1F2|=2,点(1,3/2)在该椭圆上.(1)求椭圆C的方程;(2)过F1的直线L与椭圆C相交于A,B两点,以F2为圆心为半径的圆与直线L相切,求△AF2B的面积.
40.已知直线经过椭圆C:x2/a2+y2/b2=1(a>b>0)的一个顶点B和一个焦点F.(1)求椭圆的离心率;(2)设P是椭圆C上动点,求|PF|-|PB|的取值范围,并求|PF|-|PB||取最小值时点P的坐标.
41.已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点.(1)当直线l过圆心C时,求直线l的方程;(2)当直线l的倾斜角为45°时,求弦AB的长.
42.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
43.如图,在正方体ABCD-A1B1C1D1中,E,F分别为DD1,CC1的中点.求证:(1)AC⊥BD1;(2)AE//平面BFD1.
44.给定椭圆C:x2/a2+y2/b2(a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆已知椭圆C的离心率为/2,且经过点(0,1).(1)求椭圆C的方程;(2)求直线l:x—y+3=0被椭圆C的伴随圆C1所截得的弦长.
45.已知等比数列{an},a1=2,a4=16.(1)求数列{an}的通项公式;(2)求数列{nan}的前n项和{Sn}.
六、单选题(0题)46.若不等式x2+x+c<0的解集是{x|-4<x<3},则c的值等于()A.12B.-12C.11D.-11
参考答案
1.B集合的运算.根据交集定义,A∩B={0}
2.C复数的运算.(1-i)(1+2i)=1+2i-i-2i2=1+i+2=3+i,
3.D
4.B几何体的三视图.由三视图可知该几何体为空心圆柱
5.B
6.D程序框图的运算.执行如下,a=2,2>0,a=1/2,1/2>0,a=-l,-1<0,退出循环,输出-1。
7.C
8.A点到直线的距离公式.由圆的方程x2+y2-2x-8y+130得圆心坐标为(1,4),由点到直线的距离公式得d=,解之得a=-4/3.
9.A圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)2+(y-y0)2=r2.
10.Ba大于0且b大于0可得到到ab大于0,但是反之不成立,所以是必要条件。
11.1有对立事件的性质可知,
12.
13.1/3充要条件及直线的斜率.l1⊥l2→2a/a-1=-1→(2a)+(a-1)=0,解得A=1/3
14.2
15.4、6、8
16.
17.5程序框图的运算.由题意,执行程序框图,可得k=1,S=1,S=3,k=2不满足条件S>16,S=8,k=3不满足条件S>16,S=16,k=4不满足条件S>16,S=27,k=5满足条件S>16,退出循环,输出k的值为5.故答案为:5.
18.(1/2,0)抛物线y2=2px(p>0)的焦点坐标为F(P/2,0)。∵抛物线方程为y2=2x,
∴2p=2,得P/2=1/2
∵抛物线开口向右且以原点为顶点,
∴抛物线的焦点坐标是(1/2,0)。
19.(-7,±2)
20.45
21.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
22.
23.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
24.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
25.
26.
27.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴
28.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为
29.(1)(2)∴又∴函数是偶函数
30.(1)(2)
31.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴数列为首项b1=32,q=16的等比数列
32.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则
33.
34.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
35.
36.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
37.
38.
39.
以F2为圆心为半径的圆的方程为(x-l)22+y2=2①当直线l⊥x轴时,与圆不相切,不符合题意.②当直线l与x不垂直时,设直线的方程为y=k(x+1),由圆心到直线的距离等
40.
41.
42.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定义在(-1,1)上的奇函数.(3)设-1<x1<x2<1,则f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班主任的课业辅导方案计划
- 音乐之声学校音乐社团培训计划
- 2025商业空间设计装修合同
- 固体制剂生产管理
- 2025年安康货运从业资格考试题
- 2025年营改增培训
- 山东省滕州市2022-2023学年高一下学期期中地理试题(含答案)
- 抗菌药物护理
- 河北省保定市唐县第一中学2024-2025学年高一下学期4月期中英语试题(原卷版+解析版)
- 人脸识别设备合同样本
- (省统测)贵州省2025年4月高三年级适应性考试(选择性考试科目)地理
- 2025年驾驶三力测试题及答案
- 【MOOC】研究生英语科技论文写作-北京科技大学 中国大学慕课MOOC答案
- 自考15040习新时代思想概论高频备考复习重点
- JJG 700 -2016气相色谱仪检定规程-(高清现行)
- API SPEC 5DP-2020钻杆规范
- (完整版)有机太阳能电池课件2
- 电梯使用单位电梯使用和运行安全管理制度
- 新中初中课程建设汇报材料
- 莲中器乐演奏活动方案
- 固定资产及累计折旧审计程序表
评论
0/150
提交评论