2015届高考数学文科一轮总复习资源6篇数列_第1页
2015届高考数学文科一轮总复习资源6篇数列_第2页
2015届高考数学文科一轮总复习资源6篇数列_第3页
2015届高考数学文科一轮总复习资源6篇数列_第4页
2015届高考数学文科一轮总复习资源6篇数列_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1讲数列的概念与简单表示法1.数列的通项公式

(1)定义:如果数列{an}的第n项an与项数n之间的函数关系可以用

来表示,那么这个公式就叫做数列的通项公式,记为an=f(n)(n∈N*).数列可以用通项公式来描述,也可以通过列表或图象来表示.

(2)数列的递推公式:如果已知数列的第一项(或前几项),且从第二项(或某一项)开始的任一项an与它的前一项an-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法.知识梳理一个公式2.数列的分类有限

无限

辨析感悟考点一由数列的前几项求数列的通项规律方法

根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的变化特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.【例2】(2012·广东卷)设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*. (1)求a1的值;

(2)求数列{an}的通项公式. 解(1)令n=1时,T1=2S1-1, ∵T1=S1=a1,∴a1=2a1-1,∴a1=1. (2)n≥2时,Tn-1=2Sn-1-(n-1)2, 则Sn=Tn-Tn-1=2Sn-n2-[2Sn-1-(n-1)2]

=2(Sn-Sn-1)-2n+1=2an-2n+1.考点二由an与Sn的关系求通项an因为当n=1时,a1=S1=1也满足上式,所以Sn=2an-2n+1(n≥1),当n≥2时,Sn-1=2an-1-2(n-1)+1,两式相减得an=2an-2an-1-2,所以an=2an-1+2(n≥2),所以an+2=2(an-1+2),因为a1+2=3≠0,所以数列{an+2}是以3为首项,公比为2的等比数列.所以an+2=3×2n-1,∴an=3×2n-1-2,当n=1时也成立,所以an=3×2n-1-2.规律方法

给出Sn与an的递推关系,求an,常用思路是:一是利用Sn-Sn-1=an(n≥2)转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.【训练2】(1)已知数列{an}的前n项和Sn=3n2-2n+1,则其通项公式为________.

(2)已知数列{an}的前n项和为Sn,a1=1,Sn=2an+1,则

Sn=________.【例3】在数列{an}中,

(1)若a1=2,an+1=an+n+1,则通项an=________;

(2)若a1=1,an+1=3an+2,则通项an=________.考点三由递推公式求数列的通项公式规律方法

数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.【典例】数列{an}的通项公式是an=n2+kn+4. (1)若k=-5,则数列中有多少项是负数?n为何值时,an有最小值?并求出最小值.

(2)对于n∈N*,都有an+1>an.求实数k的取值范围.思想方法5——用函数的思想解决数列问题[反思感悟]

(1)本题给出的数列通项公式可以看做是一个定义在正整数集N*上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论