版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
现代测试技术第二章第一页,共六十四页,2022年,8月28日测量误差的基本概念;系统误差的消除;随机误差的处理;粗大误差的剔除;测量结果的估计;测量结果的表示;微小误差准则与对比标准的选取本章主要内容第二页,共六十四页,2022年,8月28日2.1测量误差基本概念2.1.1测量误差的几个名词术语
1、真值:被测量本身客观存在的实际值。真值是客观存在,但是不可测量的。在实际计量和测量中,经常使用“约定真值”、“理论真值”和“相对真值”。约定真值:按照国际公认的单位定义,利用科学技术发展的最高水平所复现的单位基准。以法律形式规定的。可以忽略的。理论真值:理论上推导分析出来的。相对真值(实际值):是在满足规定准确度时用来代替真值使用的值。(仪表校准)第三页,共六十四页,2022年,8月28日2、标称值:计量或测量器具上标注的量值。3、示值:由测量仪器给出的量值,也称测量值。4、准确度:表示测量结果与真值的一致程度,是一个定性概念。与其相近的另一个概念是不确定度。5、重复性:在相同条件下,对同一被测量进行多次连续测量所得结果之间的一致性。6、误差公理:一切测量都具有误差,误差自始自终存在于一切科学实验之中。第四页,共六十四页,2022年,8月28日2.1.2测量误差的表示
1绝对误差:ΔA=Ax-A0
绝对误差的负值称之为修正值,也叫补值,一般用c表示,即c=-ΔA=A0-Ax
仪器的修正值一般是计量部门检定给出。示值加上修正值可获得真值,即实际值。2相对误差:
因真值A0是无法知道,往往用测量值代替,即
在实际测量中,相对误差常常用来评价测量结果的准确度,相对误差越小准确度愈高。
绝对误差相对误差引用误差容许误差第五页,共六十四页,2022年,8月28日第六页,共六十四页,2022年,8月28日3引用误差:绝对误差与测量仪表量程之比,用百分数表示,即最大引用误差:确定测量仪表的准确度等级应用最大引用误差。电测量仪表的准确度等级指数a分为:0.1、0.2、0.5、1.01.5、2.5、5.0等7级。最大引用误差不能超过仪表准确度等级指数a的百分数,即电测量仪表在使用时所产生的最大可能误差可由下式求出:
第七页,共六十四页,2022年,8月28日[例]某1.0级电压表,量程为300V,当测量值分别为U1=300V,U2=200V,U3=100V时,试求出测量值的(最大)绝对误差和示值相对误差。
[解]:ΔU1=ΔU2=ΔU3=±300×1.0%=±3VγU1=(ΔU1/U1)×100%=(±3/300)×100%=±1.0%γU2=(ΔU2/U2)×100%=(±3/200)×100%=±1.5%γU3=(ΔU3/U3)×100%=(±3/100)×100%=±3.0%
测量仪表产生的示值测量误差γx不仅与所选仪表等级指数a有关,而与所选仪表的量程有关。一般不小于满度值的2/3。第八页,共六十四页,2022年,8月28日4容许误差:指测量仪器在使用条件下可能产生的最大误差范围,可用工作误差、固有误差、影响误差、稳定性误差来描述。
容许误差通常用绝对误差表示:Δ=±(Axα%+Amβ%)
模拟仪表使用,例:电位差计β可忽略Δ=±(Axα%+n个字)数字式仪表 一般常用
式中Ax
——测量值或示值;Am
——量限或量程值;α——误差的相对项系数;β——固定项系数。当α>5ββ项可忽略
“n个字”所表示的误差值是数字仪表在给定量限下的分辨力的n倍,即末位一个字所代表的被测量量值的n倍。
例如,某3位数字电压表,当n为5,在1V量限时,“n个字”表示的电压误差是5mV,而在10V量限时,n个字”表示的电压误差是50mV。第九页,共六十四页,2022年,8月28日例:某四位半数字电压表,量程为2V,工作误差为=0.025%UX1个字,用该表测量时,读数分别为0.0012V和1.9888V,试求两种情况下的绝对误差和相对误差。解:四位半表分辨率为0.0001V.9999第十页,共六十四页,2022年,8月28日2.1.3测量误差的分类
1系统误差:大小、方向恒定不变或按一定规律变化,可预知、可修正。
基本误差:测量设备不准确或准确度等级不高。
附加误差:超过正常工作范围带来的误差。
理论误差(方法误差):测量方法、理论不完善所带来的误差
人员误差:试验人员疏忽大意、测量素质不高产生的人员误差。2随机误差:误差是随机的、可变的,不可预知、不可修正,但可用统计学方法处理。3粗大误差:明显偏离真值(异常值、坏值),应剔除。
系统误差随机误差粗大误差第十一页,共六十四页,2022年,8月28日1.系统误差定义:在同一测量条件下,多次重复测量同一量时,测量误差的绝对值和符号都保持不变,或在测量条件改变时按一定规律变化的误差,称为系统误差。例如仪器的刻度误差和零位误差,或值随温度变化的误差。产生的主要原因是仪器的制造、安装或使用方法不正确,环境因素(温度、湿度、电源等)影响,测量原理中使用近似计算公式,测量人员不良的读数习惯等。系统误差表明了一个测量结果偏离真值或实际值的程度。系差越小,测量就越准确。系统误差的定量定义是:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。即第十二页,共六十四页,2022年,8月28日2.随机误差定义:在同一测量条件下(指在测量环境、测量人员、测量技术和测量仪器都相同的条件下),多次重复测量同一量值时(等精度测量),每次测量误差的绝对值和符号都以不可预知的方式变化的误差,称为随机误差或偶然误差,简称随差。随机误差主要由对测量值影响微小但却互不相关的大量因素共同造成。这些因素主要是噪声干扰、电磁场微变、零件的摩擦和配合间隙、热起伏、空气扰动、大地微震、测量人员感官的无规律变化等。第十三页,共六十四页,2022年,8月28日例:对一不变的电压在相同情况下,多次测量得到1.235V,1.237V,1.234V,1.236V,1.235V,1.237V。单次测量的随差没有规律;但多次测量的总体却服从统计规律;可通过数理统计的方法来处理,即求算术平均值。随机误差定义:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差
第十四页,共六十四页,2022年,8月28日3.粗大误差:
定义:粗大误差是一种显然与实际值不符的误差。产生粗差的原因有:①测量操作疏忽和失误如测错、读错、记错以及实验条件未达到预定的要求而匆忙实验等。②测量方法不当或错误如用普通万用表电压档直接测高内阻电源的开路电压③测量环境条件的突然变化如电源电压突然增高或降低,雷电干扰、机械冲击等引起测量仪器示值的剧烈变化等。含有粗差的测量值称为坏值或异常值,在数据处理时,应剔除掉。
第十五页,共六十四页,2022年,8月28日2.1.4有效数字1数据的舍入规则小于5舍去;大于5进1;等于5则应用偶数法则,末位是偶数,则末位不变;末位是奇数,则末位增加1。例如,将下列数据舍入到小数第二位。25.3250→25.32(∵0.0050=0.005,末位为偶数舍去) 17.6955→17.70(∵0.0055=0.005,末位为奇数进1) 123.105→123.10(∵0.0050=0.005,末位为0,按偶数处理,舍去)2有效数字若截取得到的近似数,其截取或舍入误差的绝对值不超过近似数末位的半个单位,则该近似数从左边第一个非零数字到最末一位数字为止的全部数字,称之为有效数字。3测量结果有效数字位数的确定
第十六页,共六十四页,2022年,8月28日数据记录、运算的准确性要和测量的准确性相适应!测量值的末位数与误差的末位数对齐
有效数字:所有准确数字和一位欠准确数字第十七页,共六十四页,2022年,8月28日数学:
物理测量:
01234(a)分度值1mm
L=3.23cm三位01234(b)分度值1cm
L=3.2cm二位有效数字位数越多,测量精度越高第十八页,共六十四页,2022年,8月28日数字取舍规则运算结果(测量值)的末位数应与误差的末位数对齐。
小于5舍去;大于5进1;等于5则应用偶数法则,末位是偶数,则末位不变;末位是奇数,则末位增加1。25.3250→25.3217.6955→17.70第十九页,共六十四页,2022年,8月28日2.2系统误差的消除2.2.1从产生系统误差的来源上消除基本误差:选择准确度等级高的仪器设备;附加误差:使仪器设备工作在其规定的工作条件下,使用前正确调零、预热以消除仪器设备的;方法误差和理论误差:选择合理的测量方法,设计正确的测量步骤;人员误差:提高测量人员的测量素质,改善测量条件(选用智能化、数字化仪器仪表等)。第二十页,共六十四页,2022年,8月28日2.2系统误差的消除
2.2.2利用修正的方法来消除
C称为修正值,由计量部门检定时给出
2.2.3利用特殊的测量方法消除
替代法;差值法;正负误差补偿法;对称观测法;迭代自校法
第二十一页,共六十四页,2022年,8月28日替代法
在测量条件不变的情况下,用一已知的标准量去替代未知的被测量,通过调整标准量而保持替代前后仪器的示值不变,标准量的值等于被测量值。
第二十二页,共六十四页,2022年,8月28日交换法通过交换被测量和标准量的位置,从前后两次换位测量结果的处理中,削弱或消除系统误差。特别适用于平衡对称结构的测量装置中,并通过交换法可检查其对称性是否良好。第一次平衡 第二次平衡 上两式相乘、开方得:第二十三页,共六十四页,2022年,8月28日例:在电桥中采用交换法测电阻第二十四页,共六十四页,2022年,8月28日2.3随机误差的处理
2.3.1随机误差的统计特性和概率分布1测量误差的数学表达根据误差理论,任何一次测量中,一般都含有系统误差ε和随机误差δ,即ΔA=ε+δ=Ax-A0在一般工程测量中,系统误差远大于随机误差,即ε>>δ,相对来讲随机误差可以忽略不计,此时只需处理和估计系统误差即可。在精密测量中,系统误差已经消除或小得可以忽略不计时,即ε≈0。第二十五页,共六十四页,2022年,8月28日②对称性①单峰性
③有界性2随机误差的统计特性0④抵偿性即第二十六页,共六十四页,2022年,8月28日3随机误差的概率分布(1)正态分布的随机误差,其概率密度函数
式中σ和σ2——随机误差δ的标准差和方差
第二十七页,共六十四页,2022年,8月28日
(2)均匀分布
特点:在某一区域内,随机误差出现的概率处处相等,而在该区域外随机误差出现的概率为零。均匀分布的概率密度函数φ(δ)为
式中a——随机误差δ的极限值。仪器度盘刻度差引起的误差;仪器最小分辨率限制引起的误差数字仪表的量化(±1)误差数字计算中的舍入误差对于一些只知道误差出现的大致范围,而不知其分布规律的误差,在处理时经常按均匀分布的误差对待。
第二十八页,共六十四页,2022年,8月28日
(3)t分布主要用来处理小样本(即测量数据比较少)的测量数据。正态分布理论只适合于大样本的测量数据。t分布的概率密度函数φ(t)为:
和标准正态分布的图形类似;特点是分布与标准差的估计值无关,但与自由度(n-1)有关;当n较大(n>30)时,t分布和正态分布的差异就很小了,当n→∞时,两者就完全相同了。第二十九页,共六十四页,2022年,8月28日4随机变量中幅值的特征参量随机变量通常有两个重要特征参数,即数学期望和方差(标准偏差)。数学期望体现了随机变量分布中心的位置;方差反映了随机变量对分布中心的离散程度。1测量数据的数学期望
式中n—测量次数;Ai—第i次的测量读数.2随机变量的方差和标准差标准偏差(简称标准差):第三十页,共六十四页,2022年,8月28日2.3.2随机误差的估计
1算术平均值原理
测量列的算术平均值是最佳可信赖值,是被测量A数学期望(真值)M(A)的最佳估计,这一原理被称之为算术平均值原理。算术平均值的数学表达为:算术平均值具有以下特点:一致性:随着测量次数n的增加,趋于被测参数的
无偏性:估计值A围绕M(A)摆动,且
有效性:A摆动幅度比单个测量值小;
充分性:A包含了样本(测量列)的全部信息
第三十一页,共六十四页,2022年,8月28日2标准偏差的估计:
式中νi——剩余误差,其定义是(i=1,2,…,n)方差估计值的实用算法和递推公式分别为:
第三十二页,共六十四页,2022年,8月28日3算术平均值的标准差
实际测量中,测量次数一般取10~20次。若要进一步提高测量准确度,需从选择更高准确度的测量仪器、更合理的测量方法、更好的控制测量条件等方面入手。——算术平均值的方差估计值
——算术平均值的标准差估计值第三十三页,共六十四页,2022年,8月28日【例】用温度计重复测量某个不变的温度,得11个测量值的序列(见下表)。求测量值的平均值及其标准偏差。解:①平均值
②用公式计算各测量值残差列于上表中③实验偏差④标准偏差第三十四页,共六十四页,2022年,8月28日4测量结果的置信度(1)置信度的概念——表征测量数据或结果可信赖程度的一个参数
置信区间[M(A)-Kσ(A),M(A)+Kσ(A)]K——置信因子置信概率Ai在置信区间中的概率P。置信概率可信度(2)置信度的几何意义:在同一分布下,置信区间愈宽,置信概率(概率曲线、置信区间和横轴围成的图形面积)也就愈大,反之亦然。在不同的分布下当置信区间给定时,标准差愈小,置信因子和相应的置信概率也就愈大,反映出测量数据的可信度就愈高。
第三十五页,共六十四页,2022年,8月28日置信概率是图中阴影部分面积置信区间内包含真值的概率称为置信概率。置信限:
k——置信系数(或置信因子)第三十六页,共六十四页,2022年,8月28日(3)正态分布的置信概率当分布和k值确定之后,则置信概率可定正态分布,当k=3时置信因子k置信概率Pc10.6826920.9545030.99730区间越宽,置信概率越大第三十七页,共六十四页,2022年,8月28日第三十八页,共六十四页,2022年,8月28日(4)t分布的置信限t分布与测量次数有关。当n足够大时,t分布趋于正态分布。正态分布是t分布的极限分布。给定置信概率和测量次数n,查表得置信因子kt。自由度:v=n-1第三十九页,共六十四页,2022年,8月28日第四十页,共六十四页,2022年,8月28日(5)非正态分布的置信因子由于常见的非正态分布都是有限的,设其置信限为误差极限,即误差的置信区间为置信概率为100%。(P=1)反正弦均匀三角分布例:均匀分布
有故:第四十一页,共六十四页,2022年,8月28日第四十二页,共六十四页,2022年,8月28日[例]对某电容进行了8次等精度、无系差、独立测量,测量值如下(单位为μF):Ci75.01,75.04,75.07,75.03,75.09,75.06,75.02,75.08试求被测电容的估计值和当P=0.99时被测电容真值的置信区间。解:根据平均值原理,被测电容的估计值是测量数据的算术平均值,即
测量列的方差估计值为测量列的标准差估计值为第四十三页,共六十四页,2022年,8月28日测量列平均值的标准差估计值为当P=0.99,k=7,由表2-2查得Kt=3.50,于是可得被测电容置信区间为故被测电容真值C0以0.99的置信概率可能处在75.01~75.09μF范围内。
第四十四页,共六十四页,2022年,8月28日(6)计算:要会通过查表由K求P,或由P求K
在正态分布下,n>20次。K=1P=68.27%K=2P=95.45%K=3P=99.73%表示:K=3时区间内置信率为99.73%。第四十五页,共六十四页,2022年,8月28日2.4粗大误差的剔除大误差出现的概率很小,列出可疑数据,分析是否是粗大误差,若是,则应将对应的测量值剔除。
1.粗大误差产生原因①测量人员的主观原因:操作失误或错误记录;②客观外界条件的原因:测量条件意外改变、受较大的电磁干扰,或测量仪器偶然失效等。第四十六页,共六十四页,2022年,8月28日2.粗大误差的判别准则统计学的方法的基本思想是:给定一置信概率,确定相应的置信区间,凡超过置信区间的误差就认为是粗大误差,并予以剔除。拉依达准则格罗布斯准则第四十七页,共六十四页,2022年,8月28日(1)拉依达准则拉依达准则:设测量数据中,测量值Ak的随机误差为δK,当|δK|≥3σ(A)时,则测量值AK是含有粗大误差的异常值,应予以剔除。在实际应用中,则使用剩余误差和标准差的估计值,即
(2)格罗布斯(Grubbs)准则格罗布斯准则是由数理统计方法推导出的比较严谨的结论,具有明确的概率意义。当测量数据中,测量值AK的剩余误差νK满足
则测量值Ak是含有粗大误差的异常值,应予以剔除。第四十八页,共六十四页,2022年,8月28日3应注意的问题①所有的检验法都是人为主观拟定的,至今无统一的规定。当偏离正态分布和测量次数少时检验不一定可靠。②
若有多个可疑数据同时超过检验所定置信区间,应逐个剔除,重新计算,再行判别。若有两个相同数据超出范围时,应逐个剔除。③在一组测量数据中,可疑数据应很少。反之,说明系统工作不正常。第四十九页,共六十四页,2022年,8月28日粗大误差剔除的小结:
无系统误差(准确度较高的表)等精度多次测量得Ai,i=1,2,3……n(1)求平均值:(2)求标准差:(3)剔除粗大误差AK,若有重复(1)、(2);(4)计算其算术平均值的标准差:(5)给出置信概率下结果:单位第五十页,共六十四页,2022年,8月28日例:用准确度较高的测量仪器对某电阻进行16次等精度测量,测量结果:34.86,35.21,34.97,35.14,35.35,35.21,35.16,35.22,35.30,35.71,35.94,35.63,35.65,35.70,35.24,35.36,求被测量电阻的测量结果。解:a.无系统误差;b.c.
d.第13次,36.65-35.30=1.35>该值应剔除。e.重新计算15次测量的
f.第五十一页,共六十四页,2022年,8月28日【例】对某电压进行了16次等精度测量,测量数据中已记入修正值,列于表中。要求给出包括误差在内的测量结果表达式。第五十二页,共六十四页,2022年,8月28日第五十三页,共六十四页,2022年,8月28日第五十四页,共六十四页,2022年,8月28日2.5测量结果误差的估计2.5.1直接测量结果的误差估计1.已知仪表的量程和准确度等级,测量结果表示:
ΔA=±aAm%式中ΔA,γA——测量结果Ax的绝对误差和相对误差,Ax为测量结果;
a,Am——分别为仪器仪表的准确度等级和量程。第五十五页,共六十四页,2022年,8月28日2.已知仪器仪表的基本误差或允许误差的测量结果(数字表):ΔA=ΔΔ=±(Axα%+n个字)γA=(Δ/Ax)×100%式中Δ——仪器仪表的基本误差或允许误差
3.若进行了多次测量,则还应考虑随机误差的影响。若多次测量的标准偏差的估计值为σ,则测量误差为
ΔA=±(aAm%+Kσ)ΔA=±(|Δ|+Kσ)式中K——置信因子。
第五十六页,共六十四页,2022年,8月28日2.5.2间接测量结果的误差估计(误差合成)问题:用间接法测量电阻消耗的功率时,需测量电阻R、端电压V和电流I三个量中的两个量,如何根据电阻、电压或电流的误差来推算功率的误差呢?1误差合成的一般公式设测量结果y是n个独立变量A1,A2,…,An的函数,即y=f(A1,A2,…,An)绝对误差:
相对误差:*重点是要确定传递函数CΔ和Cγ。函数总误差等于各误差分量的代数和第五十七页,共六十四页,2022年,8月28日2误差传递系数的确定确定误差传递系数是误差合成的关键。传递系数确定的常用方法有微分确定法、计算机仿真确定法和实验确定法。
(1)微分确定法
条件:适合于确切知道函数的关系式,已知y=f(A1,A2,…,An)。
结论:(2)计算机仿真确定法(3)实验确定法。
变量Ai对函数y的绝对误差传递系数等于y对Ai的一阶偏导数。
变量Ai对函数y的相对误差传递系数,等于函数y的对数对Ai的一阶偏导数乘以Ai。
第五十八页,共六十四页,2022年,8月28日在实际应用中,由于分项误差符号不定而可同时取正负,有时就采用保守的办法来估算误差,即将式中各分项取绝对值后再相加该公式常用于在设计阶段中对传感器、仪器及系统等的误差进行分析和估算,以采取减少误差的相应措施。但是,更严格和更准确地计算合成误差的方法是测量不确定度理论中的合成不确定度评定。第五十九页,共六十四页,2022年,8月28日
几个典型特例:
第六十页,共六十四页,2022年,8月28日第六十
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年综合安防弱电布线工程施工合同样本
- 2024年劳务安全责任承包具体合同
- 2024-2025学年黑龙江省龙东十校高二上学期开学考试历史试题(解析版)
- 2023年控制计算机项目评价分析报告
- 2023年智能输电系统项目评估分析报告
- 2024至2030年中国高粘度保温沥青泵行业投资前景及策略咨询研究报告
- 2024至2030年中国电动警车玩具行业投资前景及策略咨询研究报告
- 2024至2030年中国橡胶密封件行业投资前景及策略咨询研究报告
- 2024至2030年中国数字式直流脉宽调速驱动装置数据监测研究报告
- 2024至2030年装饰绘画项目投资价值分析报告
- 沪教牛津版八年级上册初二英语期末测试卷(5套)
- GB∕T 2980-2018 工程机械轮胎规格、尺寸、气压与负荷
- CNC刀具寿命管控表
- 中国标准文献分类法(中标分类CCS)
- 《国家自然科学基金申请经验交流》PPT共30页课件
- 《红楼梦(英文)》PPT课件
- 姜文导演风格分析.ppt
- 三维地下管网方案设计书
- 关于(牙合)学几个热点问题争论
- 二次函数单元测试卷试题
- 高中体育《100米短跑》教学PPT课件
评论
0/150
提交评论