版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年江苏省泰州市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.“a=0”是“a2+b2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
2.若a>b.则下列各式正确的是A.-a>-b
B.C.D.
3.已知向量a=(2,4),b=(-1,1),则2a-b=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)
4.A.B.C.D.
5.不等式组的解集是()A.{x|0<x<2}
B.{x|0<x<2.5}
C.{x|0<x<}
D.{x|0<x<3}
6.若将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期后,所得图象对应的函数为()A.y=2sin(2x+π/4)
B.y=2sin(2x+π/3)
C.3;=2sin(2x-π/4)
D.3;=2sin(2x-π/3)
7.直线以互相平行的一个充分条件为()A.以都平行于同一个平面
B.与同一平面所成角相等
C.平行于所在平面
D.都垂直于同一平面
8.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2
B.2
C.
D.
9.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()A.0B.-8C.2D.10
10.从200个零件中抽测了其中40个零件的长度,下列说法正确的是()A.总体是200个零件B.个体是每一个零件C.样本是40个零件D.总体是200个零件的长度
二、填空题(10题)11.若f(x-1)=x2-2x+3,则f(x)=
。
12.过点A(3,2)和点B(-4,5)的直线的斜率是_____.
13.已知拋物线的顶点为原点,焦点在y轴上,拋物线上的点M(m,-2)到焦点的距离为4,则m的值为_____.
14.
15.
16.
17.在锐角三角形ABC中,BC=1,B=2A,则=_____.
18.
19.函数f(x)=sin(x+φ)-2sinφcosx的最大值为_____.
20.要使的定义域为一切实数,则k的取值范围_____.
三、计算题(5题)21.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
22.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
23.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.
24.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
25.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
四、简答题(10题)26.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值
27.解不等式组
28.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。
29.已知a是第二象限内的角,简化
30.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。
31.已知集合求x,y的值
32.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn
33.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
34.已知cos=,,求cos的值.
35.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。
五、解答题(10题)36.求函数f(x)=x3-3x2-9x+5的单调区间,极值.
37.解不等式4<|1-3x|<7
38.已知数列{an}是等差数列,且a2=3,a4+a5+a6=27(1)求通项公式an(2)若bn=a2n,求数列{bn}的前n项和Tn.
39.
40.
41.
42.
43.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
44.2017年,某厂计划生产25吨至45吨的某种产品,已知生产该产品的总成本y(万元)与总产量x(吨)之间的关系可表示为y=x2/10-2x+90.(1)求该产品每吨的最低生产成本;(2)若该产品每吨的出厂价为6万元,求该厂2017年获得利润的最大值.
45.如图,在三棱锥A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°点E,F分别是AC,AD的中点.(1)求证:EF//平面BCD;(2)求三棱锥A-BCD的体积.
六、单选题(0题)46.设a>b,c>d则()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be
参考答案
1.B命题的判定.若a2+b2=0,则a=b=0;若a=0,则a2+b2不一定等于0.
2.C
3.A平面向量的线性计算.因为a=(2,4),b=(-1,1),所以2a-b=(2×2-(-1),2×4-1)=(5,7).
4.A
5.C由不等式组可得,所以或,由①可得,求得;由②可得,求得,综上可得。
6.D三角函数图像性质.函数y=2sin(2x+π/6)的周期为π,将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期即π/4个单位,所得函数为y=2sin[2(x-π/4)+π/6]=2sin(2x-π/3)
7.D根据直线与平面垂直的性质定理,D正确。
8.D
9.B直线之间位置关系的性质.由k=4-m/m+2=-2,得m=-8.
10.D总体,样本,个体,容量的概念.总体是200个零件的长度,个体是每一零件的长度,样本是40个零件的长度,样本容量是40.
11.
12.
13.±4,
14.
15.45
16.
17.2
18.75
19.1.三角函数最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函数f(x)==sin(x+φ)-2sinφcosx的最大值为1.
20.-1≤k<3
21.
22.
23.
24.
25.
26.
27.x2-6x+8>0,∴x>4,x<2(1)(2)联系(1)(2)得不等式组的解集为
28.
∵μ//v∴(2x+1.4)=(2-x,3)得
29.
30.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=
PD=PC=2
31.
32.
33.(1)(2)
34.
35.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴
36.f(x)=x3-6x-9=3(x+1)(x-3)令f(x)>0,∴x>3或x,-1.令f(x)<0时,-1<x<3.∴f(x)单调增区间为(-∞,-1],[3,+∞),单调减区间为[-1,3].f(x)极大值为f(-1)=l0,f(x)极小值为f(3)=-22.
37.
38.
39.
40.
41.
42.
43.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定义在(-1,1)上的奇函数.(3)设-1<x1<x2<1,则f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1-x1)(1+x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《热工与流体力学》2021-2022学年第一学期期末试卷
- 沈阳理工大学《光电类导论》2021-2022学年期末试卷
- 沈阳理工大学《单片机原理与应用》2021-2022学年期末试卷
- 管护经营合同更名理
- 合同标准安全条款自查报告范文
- 银行员工转正申请书范文6篇
- 2024系统开发合同2
- 2024消防工程合同范本(修改)
- 深圳大学《中美关系史》2021-2022学年第一学期期末试卷
- 应急管理条例解读
- 白云区地图广州市白云区乡镇街道地图高清矢量可填充编辑地图PPT模板
- 反对三股势力和两面人的发声亮剑发言材料精选4篇
- 员工心理健康培训(关注员工心理健康打好心里防疫战)
- 急救药品教学课件
- 店长离职交接表
- 可爱卡通小熊背景小学班干部竞选自我介绍PPT模板
- 高温合金精品PPT课件
- 课题研究计划执行情况(共10篇)
- DB51∕T 5057-2016 四川省高分子复合材料检查井盖、水箅技术规程
- 教师德育工作考核细则条例
- GB∕T 41168-2021 食品包装用塑料与铝箔蒸煮复合膜、袋
评论
0/150
提交评论