




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年安徽省淮北市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.6人站成一排,甲乙两人之间必须有2人,不同的站法有()A.144种B.72种C.96种D.84种
2.己知向量a=(3,-2),b=(-1,1),则3a+2b
等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)
3.已知角α的终边经过点P(2,-1),则(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3
4.函数在(-,3)上单调递增,则a的取值范围是()A.a≥6B.a≤6C.a>6D.-8
5.A.3个B.2个C.1个D.0个
6.函数f(x)的定义域是()A.[-3,3]B.(-3,3)C.(-,-3][3,+)D.(-,-3)(3,+)
7.5人排成一排,甲必须在乙之后的排法是()A.120B.60C.24D.12
8.设集合,,则()A.A,B的都是有限集B.A,B的都是无限集C.A是有限集,B是无限集D.B是有限集,A是无限集
9.如图所示,一个空间几何体的正视图和侧视图都是全等的等腰三角形,俯视图是一个圆,那么这个几何体是()A.正方体B.圆锥C.圆柱D.半球
10.为了了解全校240名学生的身高情况,从中抽取240名学生进行测量,下列说法正确的是()A.总体是240B.个体是每-个学生C.样本是40名学生D.样本容量是40
二、填空题(10题)11.
12.若直线的斜率k=1,且过点(0,1),则直线的方程为
。
13.若ABC的内角A满足sin2A=则sinA+cosA=_____.
14.
15.若x<2,则_____.
16.
17.已知(2,0)是双曲线x2-y2/b2=1(b>0)的焦点,则b=______.
18.(x+2)6的展开式中x3的系数为
。
19.已知拋物线的顶点为原点,焦点在y轴上,拋物线上的点M(m,-2)到焦点的距离为4,则m的值为_____.
20.函数f(x)=-X3+mx2+1(m≠0)在(0,2)内的极大值为最大值,则m的取值范围是________________.
三、计算题(5题)21.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
22.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
23.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
24.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
25.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
四、简答题(10题)26.由三个正数组成的等比数列,他们的倒数和是,求这三个数
27.已知求tan(a-2b)的值
28.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
29.解不等式组
30.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。
31.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。
32.求证
33.求经过点P(2,-3)且横纵截距相等的直线方程
34.在等差数列中,已知a1,a4是方程x2-10x+16=0的两个根,且a4>a1,求S8的值
35.化简
五、解答题(10题)36.已知函数f(x)=ex(ax+b)—x2—4x,曲线:y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.
37.已知递增等比数列{an}满足:a2+a3+a4=14,且a3+1是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若数列{an}的前n项和为Sn,求使Sn<63成立的正整数n的最大值.
38.
39.已知等差数列{an}的公差为2,其前n项和Sn=pnn+2n,n∈N(1)求p的值及an;(2)在等比数列{bn}中,b3=a1,b4=a2+4,若{bn}的前n项和为Tn,求证:数列{Tn+1/6}为等比数列.
40.
41.如图,ABCD-A1B1C1D1为长方体.(1)求证:B1D1//平面BC1D;(2)若BC=CC1,,求直线BC1与平面ABCD所成角的大小.
42.
43.
44.在锐角△ABC中,内角A,B,C所对的边分别是a,b,c(1)求c的值;(2)求sinA的值.
45.
六、单选题(0题)46.一元二次不等式x2+x-6<0的解集为A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)
参考答案
1.A6人站成一排,甲乙两人之间必须有2人,可以先从其余4人中选出2人,安排在甲乙两人之间,在与其余两人进行排列,所以不同站法共有种。
2.D
3.D三角函数的化简求值.三角函数的定义.因为角a终边经过点P(2,-1),所以tanα=-1/2,sinα-cosα/sinα+cosα=tanα-1/tanα+1=(-1/2-1)f(-1/2+1)=-3
4.A
5.C
6.B由题可知,3-x2大于0,所以定义域为(-3,3)
7.C
8.B由于等腰三角形和(0,1)之间的实数均有无限个,因此A,B均为无限集。
9.B空间几何体的三视图.由正视图可排除选项A,C,D,
10.D确定总体.总体是240名学生的身高情况,个体是每一个学生的身高,样本是40名学生的身髙,样本容量是40.
11.-1/16
12.3x-y+1=0因为直线斜率为k=1且过点(0,1),所以方程是y-2=3x,即3x-y+1=0。
13.
14.
15.-1,
16.(-7,±2)
17.
双曲线的性质.由题意:c=2,a=1,由c2=a2+b2.得b2=4-1=3,所以b=.
18.160
19.±4,
20.(0,3).利用导数求函数的极值,最值.f(x)=-3x2+2mx=x(-3x+2m).令f(x)=0,得x=0或x=2m/3因为x∈(0,2),所以0<2m/3<2,0<m<3.答案:(0,3).
21.
22.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
23.
24.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
25.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
26.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1
27.
28.(1)(2)
29.x2-6x+8>0,∴x>4,x<2(1)(2)联系(1)(2)得不等式组的解集为
30.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴
31.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
32.
33.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为
34.方程的两个根为2和8,又∴又∵a4=a1+3d,∴d=2∵。
35.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
36.
37.(1)设递增等比数列{an}的首项为a1,公比为q,依题意,有2(a3+1)=a2+a4,代入a2+a3+a4=14,得a3=4..由∵<a2+a4=10,由
38.
39.
40.
41.(1)ABCD-A1B1C1D1为长方体,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《Unit 5 Welcome》(教学设计)-2024-2025学年北师大版(一起)英语二年级上册
- 河北工业职业技术大学《数据结构实验》2023-2024学年第二学期期末试卷
- Unit 7 Outdoor fun Pronunciation 教学设计-2024-2025学年译林版英语七年级下册
- 广东水利电力职业技术学院《建筑力学与结构选型》2023-2024学年第二学期期末试卷
- 湖北财税职业学院《智慧物流技术与装备》2023-2024学年第二学期期末试卷
- 黔南民族幼儿师范高等专科学校《电路实验》2023-2024学年第二学期期末试卷
- 内蒙古民族幼儿师范高等专科学校《水利水电工程施工》2023-2024学年第二学期期末试卷
- 济南2025年山东济南市历城区所属事业单位招聘初级综合类岗位50人笔试历年参考题库附带答案详解-1
- 焦作工贸职业学院《无人机行业应用》2023-2024学年第二学期期末试卷
- 海南经贸职业技术学院《化学教学设计研究》2023-2024学年第二学期期末试卷
- 加涅的信息加工理论-课件
- 400字作文稿纸(方格)A4打印模板
- 不领证的夫妻离婚协议书
- 铝型材企业组织架构及部门职能
- 华为BEM战略解码体系完整版
- Python商务数据分析与实战PPT完整全套教学课件
- 利用“自然笔记”提高小学生科学素养获奖科研报告
- 焓湿图的应用实例
- 2022-2023学年江苏省扬州市普通高校高职单招综合素质测试题(含答案)
- 小学科学教科版三年级下册全册课课练习题(2023春)(附参考答案)
- 《是谁觉醒了中国》
评论
0/150
提交评论