2022-2023学年内蒙古自治区锡林郭勒盟普通高校对口单招数学自考模拟考试(含答案)_第1页
2022-2023学年内蒙古自治区锡林郭勒盟普通高校对口单招数学自考模拟考试(含答案)_第2页
2022-2023学年内蒙古自治区锡林郭勒盟普通高校对口单招数学自考模拟考试(含答案)_第3页
2022-2023学年内蒙古自治区锡林郭勒盟普通高校对口单招数学自考模拟考试(含答案)_第4页
2022-2023学年内蒙古自治区锡林郭勒盟普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年内蒙古自治区锡林郭勒盟普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.集合M={a,b},N={a+1,3},a,b为实数,若M∩N={2},则M∪N=()A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}

2.已知向量a=(2,4),b=(-1,1),则2a-b=()A.(5,7)B.(5,9)C.(3,7)D.(3,9)

3.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是()A.

B.

C.

D.

4.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}

5.“a=0”是“a2+b2=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件

6.函数的定义域为()A.(0,1]B.(0,+∞)C.[1,+∞)D.(—∞,1]

7.过点A(2,1),B(3,2)直线方程为()A.x+y-1=0B.x-y-1=0C.x+y+l=0D.x-y+l=0

8.若不等式|ax+2|<6的解集为(-1,2),则实数a等于()A.8B.2C.-4D.-8

9.将三名教师排列到两个班任教的安排方案数为()A.5B.6C.8D.9

10.函数的定义域是()A.(-1,1)B.[0,1]C.[-1,1)D.(-1,1]

二、填空题(10题)11.

12.则a·b夹角为_____.

13.

14.

15.某校有高中生1000人,其中高一年级400人,高二年级300人,高三年级300人,现釆取分层抽样的方法抽取一个容量为40的样本,则高三年级应抽取的人数是_____人.

16.

17.五位同学站成一排,其中甲既不站在排头也不站在排尾的排法有_____种.

18.设集合,则AB=_____.

19.设x>0,则:y=3-2x-1/x的最大值等于______.

20.若=_____.

三、计算题(5题)21.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

22.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

23.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

24.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

25.解不等式4<|1-3x|<7

四、简答题(10题)26.平行四边形ABCD中,CBD沿对角线BD折起到平面CBD丄平面ABD,求证:AB丄DE。

27.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。

28.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。

29.求证

30.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点

31.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.

32.已知求tan(a-2b)的值

33.解不等式组

34.在等差数列中,已知a1,a4是方程x2-10x+16=0的两个根,且a4>a1,求S8的值

35.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。

五、解答题(10题)36.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

37.等差数列{an}中,a7=4,a19=2a9.(1)求{an}的通项公式;(2)设bn=1/nan求数列{bn}的前n项和Sn.

38.

39.已知递增等比数列{an}满足:a2+a3+a4=14,且a3+1是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若数列{an}的前n项和为Sn,求使Sn<63成立的正整数n的最大值.

40.如图,在正方体ABCD-A1B1C1D1中,E,F分别为DD1,CC1的中点.求证:(1)AC⊥BD1;(2)AE//平面BFD1.

41.已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.(1)求通项公式an;(2)设bn=2an求数列{bn}的前n项和Sn.

42.

43.2017年,某厂计划生产25吨至45吨的某种产品,已知生产该产品的总成本y(万元)与总产量x(吨)之间的关系可表示为y=x2/10-2x+90.(1)求该产品每吨的最低生产成本;(2)若该产品每吨的出厂价为6万元,求该厂2017年获得利润的最大值.

44.已知等比数列{an}的公比q==2,且a2,a3+1,a4成等差数列.⑴求a1及an;(2)设bn=an+n,求数列{bn}前5项和S5.

45.已知函数f(x)=sinx+cosx,x∈R.(1)求函数f(x)的最小正周期和最大值;(2)函数y=f(x)的图象可由y=sinx的图象经过怎样的变换得到?

六、单选题(0题)46.A.N为空集

B.C.D.

参考答案

1.D集合的运算.∵M∩N=2,∴2∈M,2∈N.∴a+l=2,即a=1.又∵M={a,b},∴b=2.AUB={1,2,3}.

2.A平面向量的线性计算.因为a=(2,4),b=(-1,1),所以2a-b=(2×2-(-1),2×4-1)=(5,7).

3.C几何体的三视图.由题意知,俯视图的长度和宽度相等,故C不可能.

4.B集合的运算.由A={1,3,5,7},B={x|2≤x≤5},得A∩B={3,5}

5.B命题的判定.若a2+b2=0,则a=b=0;若a=0,则a2+b2不一定等于0.

6.A

7.B直线的两点式方程.点代入验证方程.

8.C

9.B

10.C由题可知,x+1>=0,1-x>0,因此定义域为C。

11.0

12.45°,

13.-2/3

14.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.

15.12,高三年级应抽人数为300*40/1000=12。

16.12

17.72,

18.{x|0<x<1},

19.

基本不等式的应用.

20.

21.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

22.

23.

24.

25.

26.

27.

28.x-7y+19=0或7x+y-17=0

29.

30.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点

31.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵

若时

故当X<-1时为增函数;当-1≤X<0为减函数

32.

33.x2-6x+8>0,∴x>4,x<2(1)(2)联系(1)(2)得不等式组的解集为

34.方程的两个根为2和8,又∴又∵a4=a1+3d,∴d=2∵。

35.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

36.

37.

38.

39.(1)设递增等比数列{an}的首项为a1,公比为q,依题意,有2(a3+1)=a2+a4,代入a2+a3+a4=14,得a3=4..由∵<a2+a4=10,由

40.(1)连接BD,由D1D⊥平面ABCD→D1D⊥AC又BD⊥AC,BD∩D1D=D,BD1,BD平面BDD1→AC⊥平面BDD1,又因为BD1包含于平面BDD1→AC⊥BD1.(2)连接EF,因为E,F分别为DD1,CC1的中点,所以EF//DC,且EF=DC,又DC//AB,且EF=AB所以四边形EFBA是平行四边形,所以AE//BF,又因为AE不包含平面BFD1,BF包含于平面BFD1,所以AE//平面BFD1

41.(1)由题意知

42.

43.(1)设每吨的成本为w万元,则w=y/x=x/10+90/(x-2)>2-2=4,当且仅当总产量x=30吨时,每吨的成本最低为4万元.(2)设利润为u万元,则w=6x-(x2/10-2x+90)=-x2/10+8x-90=-1/10(x-40)2+70,当总产量x=40吨时,利润最大为70万元.

44.(1)由题可得2a3+2=a2+a4,所以2×a1×22+2=a1×2+a1×23所以a1=1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论